Calculus

Problem 24201

Calculate the integral 101016x54x33x3dx\int_{-10}^{10} \sqrt[3]{16 x^{5}-4 x^{3}-3 x} d x and choose the correct value: 0, -1, 1, None, or 1/41/4.

See Solution

Problem 24202

Determine the series for convergence of n=1n5n4+5n3+2n\sum_{n=1}^{\infty} \frac{n}{5 n^{4}+5 n^{3}+2 n}. Choose from:
1. n=11n3\sum_{n=1}^{\infty} \frac{1}{n^{3}}
2. n=11n4\sum_{n=1}^{\infty} \frac{1}{n^{4}}
3. n=11n5\sum_{n=1}^{\infty} \frac{1}{n^{5}}
4. n=11n\sum_{n=1}^{\infty} \frac{1}{n}

See Solution

Problem 24203

A seller estimates ice cream sales nn with temperature TCT^{\circ}C: n=150T3+T2+50n=-\frac{1}{50} T^{3}+T^{2}+50, 0T300 \leq T \leq 30.
a) Find nn at T=20T=20. b) Find the rate of sales increase in terms of TT. c) Find TT for max sales increase. d) Explain its significance on the nn vs. TT graph.

See Solution

Problem 24204

Find where the function f(x)=x33x3f(x)=\sqrt[3]{x^{3}-3 x} has vertical tangent lines: x=0,x=3x=0, x=-3; x=1,x=1x=1, x=-1; none; x=3,x=3x=3, x=-3; x=0,x=3x=0, x=3.

See Solution

Problem 24205

Determine if the series 1+1(1)(1)1/4+1(2)(2)1/4+1+\frac{1}{(1)(1)^{1 / 4}}+\frac{1}{(2)(2)^{1 / 4}}+\cdots converges or diverges.

See Solution

Problem 24206

Find the average rate of change of f(x)f(x) on [1,7][1,7] given rates of 8 on [1,3][1,3] and 11 on [3,7][3,7].

See Solution

Problem 24207

Find the limit as xx approaches 3 of 3f2(x)+x2+742x+143 f^{2}(x) + \frac{\sqrt{x^{2}+7}-4}{2-\sqrt{x+1}} - 4 given f(3)=2f(3) = 2. Choices: 17, 5, 4, 1, None.

See Solution

Problem 24208

Calculate 16(2f(x)+6x2)dx\int_{1}^{6}\left(2 f(x)+\frac{6}{x^{2}}\right) d x given 13(f(x)22x)dx=2\int_{1}^{3}\left(\frac{f(x)}{2}-2 x\right) d x=2 and 634f(x)dx=20\int_{6}^{3} 4 f(x) d x=20. Choices: 1, 35, -15, 55, None.

See Solution

Problem 24209

Evaluate the integral 442x3+5dx\int_{4}^{4} 2 \sqrt{x^{3}+5} d x. What is the result?

See Solution

Problem 24210

Find the limit: limx4x+1(x4)2\lim _{x \rightarrow 4^{-}} \frac{x+1}{(x-4)^{2}}. What is its value? 0, -\infty, 1, or \infty?

See Solution

Problem 24211

Find the average value of the function f(x)=6x2+4x5f(x)=6 x^{2}+4 x-5 on the interval [1,2][1,2]. Choices: 15, 30, 3, 15/215 / 2.

See Solution

Problem 24212

Calculate 16(2f(x)+6x2)dx\int_{1}^{6}\left(2 f(x)+\frac{6}{x^{2}}\right) d x given the integrals 13(f(x)22x)dx=2\int_{1}^{3}\left(\frac{f(x)}{2}-2 x\right) d x=2 and 634f(x)dx=20\int_{6}^{3} 4 f(x) d x=20. Options: 15, None, 55, 35, 15-15.

See Solution

Problem 24213

Find the absolute maximum of f(x)=x4+4x+5f(x)=x^{4}+4x+5 on the interval [0,1][0,1]. Choices: 1, -4, 12, 10.

See Solution

Problem 24214

Find the value of limx3(3f2(x)+x2+742x+1+8)\lim _{x \rightarrow 3}\left(3 f^{2}(x)+\frac{\sqrt{x^{2}+7}-4}{2-\sqrt{x+1}}+8\right) if f(3)=2f(3)=2. Choices: 17, 1, 5, Does Not Exist, None.

See Solution

Problem 24215

Find the tangent line to (x+y)35x+7y=10(x+y)^{3}-5 x+7 y=10 at the intersection with 2xy=02-x-y=0. Which equation is correct?

See Solution

Problem 24216

Find where the function f(x)=x213f(x)=\sqrt[3]{x^{2}-1} has a vertical tangent line: x=0x=0, x=3x=3, x=3x=-3, x=1x=1, x=1x=-1, or none?

See Solution

Problem 24217

Calculate 042xx2+9dx\int_{0}^{4} \frac{2 x}{\sqrt{x^{2}+9}} d x. What is the result? 4, 8, 1, or 2?

See Solution

Problem 24218

Express the integral 1311+xdx\int_{1}^{3} \frac{1}{1+x} d x as a limit of a Riemann sum.

See Solution

Problem 24219

Find the critical numbers of the function f(x)=x3+x25x5f(x)=x^{3}+x^{2}-5x-5.

See Solution

Problem 24220

Find G(0)G^{\prime}(0) for the function G(x)=x2+13x+4(t2+2)2dtG(x)=\int_{x^{2}+1}^{3 x+4}(t^{2}+2)^{2} dt.

See Solution

Problem 24221

Calculate the integral 8864x2dx\int_{-8}^{8} \sqrt{64-x^{2}} d x. What is the result? Options: 12/3-12 / 3, 32π32 \pi, 64π64 \pi, 12π12 \pi.

See Solution

Problem 24222

Find the inflection point of the function f(x)=x+4xf(x)=x+\frac{4}{x} from the options: x=0x=0, x=1x=-1, x=1x=1, or None.

See Solution

Problem 24223

Find limx12x145xx1\lim _{x \rightarrow 1} \frac{|2 x-1|-|4-5 x|}{x-1}. What is the limit value? Choices: 3-3, 3, Does Not Exist, 1-1.

See Solution

Problem 24224

Evaluate the integral 116x1145dx\int_{1}^{1} 6 \sqrt[5]{x^{11}-4} d x. What is the result? Choices: -1, 1/3, 0, 1.

See Solution

Problem 24225

Calculate 224x2dx\int_{-2}^{2} \sqrt{4-x^{2}} d x. What is the result: 12π12 \pi, 6π6 \pi, 2π2 \pi, or 4π4 \pi?

See Solution

Problem 24226

Verify the inequality: 34xdx34x2dx\int_{3}^{4} x \, dx \leq \int_{3}^{4} x^{2} \, dx without calculating the integrals.

See Solution

Problem 24227

Calculate the integral 22x5+x35dx\int_{-2}^{2} \sqrt[5]{x^{5}+x^{3}} d x and choose the correct value: 0, 1-1, 1/31/3, or none.

See Solution

Problem 24228

Evaluate the integral 042xx2+9dx\int_{0}^{4} \frac{2 x}{\sqrt{x^{2}+9}} d x. What is the result?

See Solution

Problem 24229

Find the value of cc that satisfies the Intermediate Value Theorem for f(x)=x3+1f(x)=x^{3}+1 on [1,2][-1,2] with w=2w=2.

See Solution

Problem 24230

Find the bounds mm and nn for the integral I=0π632cos2(x)dxI=\int_{0}^{\pi} \frac{6}{3-2 \cos ^{2}(x)} d x.

See Solution

Problem 24231

Gegeben ist die Funktion f(x)=(10x5)e2xf(x)=(10 x-5) \cdot e^{2 x}. Bestimmen Sie Nullstellen, Extrempunkte, Wendepunkt und Fläche für x=2x=-2.

See Solution

Problem 24232

Find the limit: limx3+x3x3\lim _{x \rightarrow 3^{+}} \frac{|x-3|}{\sqrt{x-3}}. What is the result?

See Solution

Problem 24233

Find the values of aa for the continuous function f(x)f(x) defined as:
f(x)={x31x1, if x12a25, if x=1 f(x)=\left\{\begin{array}{ll} \frac{x^{3}-1}{x-1} & , \text { if } x \neq 1 \\ 2 a^{2}-5 & , \text { if } x=1 \end{array}\right.
Options: 1,11, -1; 2 only; None; -2 only; 2,22, -2.

See Solution

Problem 24234

Find the average rate of change of f(x)f(x) on [1,7][1,7] given rates of 8 on [1,3][1,3] and 11 on [3,7][3,7]. Choices: 1, 5, None, 19, 10.

See Solution

Problem 24235

Find G(1)G'(1) for G(x)=x2+12x+4(t2+2)2dtG(x)=\int_{x^{2}+1}^{2x+4}(t^{2}+2)^{2} dt. Choose the correct value from the options.

See Solution

Problem 24236

Find the general antiderivative of these functions: a. f(x)=sec(x)+cos(x)cos(x)f(x)=\frac{\sec(x)+\cos(x)}{\cos(x)}; b. f(x)=aa+xf(x)=\frac{a}{a+x}.

See Solution

Problem 24237

Evaluate the integral I=0π632cos2(x)dxI=\int_{0}^{\pi} \frac{6}{3-2 \cos ^{2}(x)} d x to find mm and nn such that mInm \leq I \leq n. Options: π\pi, 6π6\pi; 2π2\pi, 6π6\pi; 2π2\pi, 3π3\pi; None; -2, 12.

See Solution

Problem 24238

Determine the intervals where the function f(x)=x2+1xf(x)=\frac{x^{2}+1}{x} is concave upward: (,0)(-\infty, 0), RR, (0,)(0, \infty), (2)(-\infty-2).

See Solution

Problem 24239

Evaluate the integral 22x5+x35dx\int_{-2}^{2} \sqrt[5]{x^{5}+x^{3}} d x. What is the result? Choices: 1/31/3, 0, 1, 1-1, None.

See Solution

Problem 24240

Solve the following differential equations: a. dyds=cos(2πs),0s1\frac{d y}{d s}=\cos (2 \pi s), 0 \leq s \leq 1 b. dydx=2x3x3,x>0\frac{d y}{d x}=\frac{2}{x^{3}}-x^{3}, \mathrm{x}>0 c. dydt=et2,t0\frac{d y}{d t}=e^{\frac{-t}{2}}, t \geq 0

See Solution

Problem 24241

Hausaufgabe 21: Betrachten Sie die Differentialgleichung y1xy1x2y=ln(x)y^{\prime \prime}-\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\ln (x).
(a) Für welches α\alpha ist g(x)=xαg(x)=x^{\alpha} eine Lösung der homogenen Gleichung? (b) Bestimmen Sie ein Fundamentalsystem der homogenen Gleichung. (c) Finden Sie eine partikuläre Lösung fp(x)f_{\mathrm{p}}(x) der inhomogenen Gleichung. (d) Bestimmen Sie die Lösung des Anfangswertproblems: y1xy1x2y=ln(x)y^{\prime \prime}-\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\ln (x) mit y(1)=0y(1)=0, y(1)=0y^{\prime}(1)=0.

See Solution

Problem 24242

Berechne den Differenzenquotienten von f(x)=7x2+1f(x)=-7 x^{2}+1 für die Intervalle [0,12][0, \frac{1}{2}], [0,14][0, \frac{1}{4}], [0,116][0, \frac{1}{16}]. Stelle eine Vermutung für [0,1n][0, \frac{1}{n}] auf, wenn nn groß ist.

See Solution

Problem 24243

Find the derivative f(x)f^{\prime}(x) for these functions: a. f(x)=1x(6t35)dtf(x)=\int_{1}^{x}\left(6-\frac{t^{3}}{5}\right) dt b. f(x)=2x1+et2dtf(x)=\int_{2}^{x} \sqrt{1+e t^{2}} dt c. f(x)=3xcos2(t21)dtf(x)=\int_{3}^{x} \cos^{2}(t^{2}-1) dt

See Solution

Problem 24244

Bestimmen Sie das charakteristische Polynom p(X)p(X) der Differentialgleichung und die Lösungen der inhomogenen Gleichung.

See Solution

Problem 24245

Evaluate the integral 101016x54x33x3dx\int_{-10}^{10} \sqrt[3]{16 x^{5}-4 x^{3}-3 x} d x. What is the result? Options: 0, -1, 1, None, 1/41 / 4.

See Solution

Problem 24246

Calculate the integral 044xx2+9dx\int_{0}^{4} \frac{4 x}{\sqrt{x^{2}+9}} d x. What is the result? Options: 2, 16, 4, 8.

See Solution

Problem 24247

Find G(0)G'(0) for the function G(x)=x2+13x+4(t2+2)2dtG(x)=\int_{x^{2}+1}^{3 x+4}(t^{2}+2)^{2} dt. Choices: 972, 324, 0, 648.

See Solution

Problem 24248

Find the volume of the vase formed by revolving y=2+sin(x)y=2+\sin (x) from x=0x=0 to x=5x=5 around the x-axis in cubic inches.

See Solution

Problem 24249

A 10-ft ladder leans against a house. When the base is 8 ft away and moving at 2 ft/sec, how fast is the top sliding down?

See Solution

Problem 24250

Find the absolute maximum of f(x)=x4+4x+5f(x)=x^{4}+4x+5 on the interval [0,1][0,1].

See Solution

Problem 24251

Find the critical numbers of the function f(x)=x3+x25x5f(x)=x^{3}+x^{2}-5x-5.

See Solution

Problem 24252

Evaluate the integral I=0π632cos2(x)dxI=\int_{0}^{\pi} \frac{6}{3-2 \cos ^{2}(x)} d x and find the bounds mm and nn for mInm \leq I \leq n.

See Solution

Problem 24253

Classify the following theorems: a) Intermediate Value Theorem, b) Mean Value Theorem, c) Extreme Value Theorem.

See Solution

Problem 24254

Determine where the function f(x)=x4+4x+5f(x)=x^{4}+4 x+5 is increasing: (,6](-\infty,-6], [1,)[-1, \infty), (,1](-\infty,-1], or RR.

See Solution

Problem 24255

Find the limit: limx12x145xx1\lim _{x \rightarrow 1} \frac{|2 x-1|-|4-5 x|}{x-1}. What is the value?

See Solution

Problem 24256

Hausaufgabe 21: Betrachte die Differentialgleichung y1xy1x2y=ln(x)y^{\prime \prime}-\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\ln (x).
(a) Für welches α\alpha ist g(x)=xαg(x)=x^{\alpha} eine Lösung der homogenen Gleichung? (b) Finde ein Fundamentalsystem der homogenen Gleichung. (c) Bestimme eine partikuläre Lösung fp(x)f_{\mathrm{p}}(x). (d) Löse das Anfangswertproblem y1xy1x2y=ln(x)y^{\prime \prime}-\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\ln (x) mit y(1)=0y(1)=0, y(1)=0y^{\prime}(1)=0.

See Solution

Problem 24257

Find the average value of the function f(x)=6x2+4x5f(x)=6 x^{2}+4 x-5 on the interval [1,2][1,2].

See Solution

Problem 24258

Find the derivative ddxf(g(x))\frac{d}{dx} f(g(x)) for f(x)=(x+2)2f(x)=(x+2)^{2} and g(x)=cos(2x)g(x)=\cos(2x) at x=πx=\pi.

See Solution

Problem 24259

Find values of aa for the function defined as f(x)=x31x1f(x)=\frac{x^{3}-1}{x-1} if x1x \neq 1 and f(1)=2a25f(1)=2a^{2}-5. Options: 1,11,-1; 22 only; none; 2-2 only; 2,22,-2.

See Solution

Problem 24260

Find the Linearization L(x)L(x) of f(x)=(112+x)2/3f(x)=\left(1-\frac{1}{2+x}\right)^{2 / 3} at x=0x=0.

See Solution

Problem 24261

Find k>0k > 0 such that 0kxx2+4dx=12ln(4)\int_{0}^{k} \frac{x}{x^{2}+4} dx = \frac{1}{2} \ln (4). Choices: A. 0 B. 2\sqrt{2} C. 2 D. 12\sqrt{12} E. 12tan(ln(2)\frac{1}{2} \tan (\ln (\sqrt{2}).

See Solution

Problem 24262

Evaluate the integral: 798x8149x2dx\int \frac{7-98 x}{\sqrt{81-49 x^{2}}} d x

See Solution

Problem 24263

Gegeben ist die Funktion f(x)=x23xf(x)=x^{2}-3 x. Skizzieren Sie den Graphen für 1x4-1 \leq x \leq 4 und berechnen Sie Steigung und Winkel bei x0=2x_0=2.

See Solution

Problem 24264

Where does the function f(x)=x213f(x)=\sqrt[3]{x^{2}-1} have a vertical tangent line? Choices: x=0x=0, x=±3x=\pm3, x=±1x=\pm1, None.

See Solution

Problem 24265

Find the limit as xx approaches 3 of 3f2(x)+x2+742x+1+83f^2(x) + \frac{\sqrt{x^2+7}-4}{2-\sqrt{x+1}} + 8 given f(3)=2f(3)=2. Choices: 17, 1, 5, DNE, None.

See Solution

Problem 24266

Calculate the integral 12x2x5x+2dx\int_{1}^{2} \frac{x^{2}-x-5}{x+2} dx. Choose the correct answer from the options given.

See Solution

Problem 24267

A tank has 50 liters of oil at t=4t=4 hours. Use a right Riemann sum with R(t)R(t) values to find oil at t=15t=15 hours. Options: A. 64.9 B. 68.2 C. 114.9 D. 116.6 E. 118.2

See Solution

Problem 24268

Gegeben ist die Funktion f(x)=x23xf(x)=x^{2}-3 x. Skizzieren Sie den Graphen für 1x4-1 \leq x \leq 4 und bestimmen Sie Steigung und Winkel bei x0=2x_{0}=2.

See Solution

Problem 24269

A 10-ft ladder leans against a house. When the base is 8 ft away and moving at 2 ft/sec, how fast is the top sliding down?

See Solution

Problem 24270

Find the average value of the function f(x)=6x2+4x5f(x)=6 x^{2}+4 x-5 on the interval [1,2][1,2]. Options: 15, 30, 3, 15/215 / 2.

See Solution

Problem 24271

Find the limit as θ\theta approaches 0 from the positive side for (2cotθ)(2 - \cot \theta). What is it?

See Solution

Problem 24272

If xy=1\sqrt{x y}=1, find dydx\frac{d y}{d x}. Choose the correct option from the list.

See Solution

Problem 24273

Find the average rate of change of f(x)=3(2)2xf(x)=3(2)^{2x} from x=0x=0 to x=2x=2. Options: a) 45, b) 225, c) 75, d) 5.5.

See Solution

Problem 24274

Find the instantaneous rate of change of f(x)=3x4+2x1f(x)=3 x^{4}+2 x-1 at x=1x=-1. Options: a) -10, b) 10, c) 0, d) -14.

See Solution

Problem 24275

Identify the FALSE statement about average rate of change from the options provided.

See Solution

Problem 24276

Estimate the instantaneous rate of change of f(x)=xx2f(x)=\frac{x}{x-2} at x=2x=2. Options: a) 20000 b) 2 c) 0 d) Not continuous.

See Solution

Problem 24277

Estimate the rate of change of f(x)=cos(xπ)+4f(x)=\cos (x-\pi)+4 at x=0x=0. Choose: a) 4, b) 1, c) -1, d) 0.

See Solution

Problem 24278

Estimate the instantaneous rate of change of a function at a specific xx-value using slopes of secant or tangent lines.

See Solution

Problem 24279

Materialprobe wird erhitzt: f(t)=7050e0,2tf(t)=70-50 \cdot e^{-0,2 t}. Bestimme Graphen, maximale Erwärmungsgeschwindigkeit, Durchschnittstemperatur, Zeit für Hälfte der Endtemperatur und Zeit bis zur Halbierung der Anfangsgeschwindigkeit.

See Solution

Problem 24280

Gegeben ist die Funktion f(x)=32x12x2f(x)=\frac{3}{2} x-\frac{1}{2} x^{2}.
a) Berechne die Steigung bei x0=1x_{0}=1. b) Finde die Tangentengleichung bei x0=1x_{0}=1. c) Bestimme den Winkel γ\gamma an der yy-Achse. d) Finde x1x_{1} für einen Steigungswinkel von 6060^{\circ}.

See Solution

Problem 24281

Berechnen Sie mit der Funktion f(x)=1250x3+110x2f(x)=-\frac{1}{250} x^{3}+\frac{1}{10} x^{2} die EHEC-Erkrankten am Tag 10, das Ende der Epidemie, und die Symmetrie.

See Solution

Problem 24282

A 250 kg roller coaster starts at a 20 m hill. What is its speed at the bottom, ignoring friction?

See Solution

Problem 24283

Estimate the area under f(x)=x3f(x)=x^{3} from x=1x=1 to x=2x=2 using 2 and then 4 rectangles at midpoints.

See Solution

Problem 24284

Estimate the area under f(x)=8x2+2xf(x)=8-x^{2}+2x from x=2x=-2 to x=4x=4 using lower/upper sums with 2 or 4 rectangles.

See Solution

Problem 24285

Estimate the area under f(x)=3x2f(x)=3 x^{2} from x=0x=0 to x=10x=10 using lower and upper sums with 2 and 4 rectangles.

See Solution

Problem 24286

If limx2f(x)(x2)2=π2\lim _{x \rightarrow 2} \frac{f(x)}{(x-2)^{2}}=\frac{\pi}{2}, find limx2f(x)x2\lim _{x \rightarrow 2} \frac{f(x)}{x-2}.

See Solution

Problem 24287

Berechne den Wirkstoffgehalt nach 6 Stunden, wenn 60mg60 \mathrm{mg} eingenommen und 40mg40 \mathrm{mg} nach 1 Stunde nachweisbar sind.

See Solution

Problem 24288

Find the rate of change of f(x)=xx3f(x)=\frac{x}{x-3} for 1x4-1 \leq x \leq 4. Round your answer to two decimal places.

See Solution

Problem 24289

Leia funktsiooni y=f(x)y=f(x) puutuja tõusunurk, kui y=4xx2y=4x-x^{2} ja x0=2x_{0}=-2. Vastus täisarvuna.

See Solution

Problem 24290

Approximate the integral 214(x25)dx\int_{2}^{14}(x^{2}-5) \, dx using 4 rectangles.

See Solution

Problem 24291

Find the instantaneous rate of change of f(x)=xx2f(x)=\frac{x}{x-2} at x=1x=-1. Round your answer to two decimal places.

See Solution

Problem 24292

Zeigen Sie, dass (k+2)!2k(k+2)! \geq 2^{k} für alle kN0k \in \mathbb{N}_{0} und berechnen Sie limmmk=21mkk!\lim_{m \to \infty} m \sum_{k=2}^{\infty} \frac{1}{m^{k} k!}.

See Solution

Problem 24293

Evaluate the integral 25dxx2+6x+93\int_{-2}^{5} \frac{d x}{\sqrt[3]{x^{2}+6 x+9}}.

See Solution

Problem 24294

Find the instantaneous rate of change of f(x)=3x+2f(x)=3x+2 at x=2x=-2. What is the value?

See Solution

Problem 24295

Estimate the rate of change of f(x)=logxf(x)=\log x at x=100x=100. Options: 0.00043, 2, 0.0043, 0.000087.

See Solution

Problem 24296

A 1.84 kg1.84 \mathrm{~kg} fish falls from 213 m213 \mathrm{~m} while the pelican flies at 5.68 m/s5.68 \mathrm{~m/s}. Find the fish's impact speed.

See Solution

Problem 24297

Vergleiche die Temperaturänderungen der Funktionen f(x)=x2+25f(x)=x^{2}+25 und g(x)=250226x2+1g(x)=250-\frac{226}{x^{2}+1} in den ersten 15 Minuten.

See Solution

Problem 24298

Select functions with a positive instantaneous rate of change at x=0x=0: y=log2(x)y=\log _{2}(x), y=(12)xy=\left(\frac{1}{2}\right)^{x}, y=tanxy=\tan x, y=2xy=2^{x}.

See Solution

Problem 24299

La suite wn=2n2w_{n}=\frac{2}{n^{2}} converge vers 0. Que se passe-t-il pour les valeurs de wnw_{n} dans un intervalle [A;+[[A;+\infty[ ?

See Solution

Problem 24300

Find the rate of change of y=tanxy=\tan x at x=0x=0. Use f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} to estimate it. What is the result?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord