Calculus

Problem 13801

Find the dimensions of a rectangular tank with a square base and a volume of 37,044ft337,044 \mathrm{ft}^{3} that minimizes surface area. The height is ft\square \mathrm{ft} and the base side length is ft\square \mathrm{ft}.

See Solution

Problem 13802

Analyze the Leonard-Jones 6-3 potential: V(r)=1r6Ar3V(r)=\frac{1}{r^{6}}-\frac{A}{r^{3}}. What happens as r0r \rightarrow 0?

See Solution

Problem 13803

Analyze the function V(r)=1r6Ar3V(r)=\frac{1}{r^{6}}-\frac{A}{r^{3}} for r>0r>0.
(a) Determine the limits as r0r \rightarrow 0 and rr \rightarrow \infty.
(b) Discuss the existence of a minimum for V(r)V(r).

See Solution

Problem 13804

Given the function f(x)=x21f(x)=x^{2}-1, find the derivative at x=2x=2, f(2)f(2), tangent line equation, and graph both.

See Solution

Problem 13805

Use the function f(x)=x21f(x)=x^{2}-1 to find: (a) the derivative at x=2x=2, (b) f(2)f(2) and tangent line, (c) graph both.

See Solution

Problem 13806

Analyze the function V(r)=1r6Ar3V(r)=\frac{1}{r^{6}}-\frac{A}{r^{3}} for r>0r>0.
(a) What happens to V(r)V(r) as r0r \rightarrow 0 and rr \rightarrow \infty? (b) Explain if a minimum exists and find that minimum value of rr. r=r=\square

See Solution

Problem 13807

What is the limit of V(r)=erAearV(r)=e^{-r}-A e^{-a r} as r0r \rightarrow 0 for a=12a=\frac{1}{2} and A=1A=1?

See Solution

Problem 13808

Analyze the function V(r)=1r6Ar3V(r)=\frac{1}{r^{6}}-\frac{A}{r^{3}} for r>0r>0. What happens as r0r \to 0 and rr \to \infty?

See Solution

Problem 13809

Find conditions for a polynomial to have an absolute minimum. Analyze a graph to find its lowest degree and concave down interval.

See Solution

Problem 13810

Fish interactions are modeled by the Morse potential V(r)=erAearV(r)=e^{-r}-A e^{-a r}. With a=12a=\frac{1}{2} and A=1A=1, analyze V(r)V(r) as r0r \rightarrow 0 and \infty, then find rr that minimizes V(r)V(r). r=r=\square

See Solution

Problem 13811

Given the function f(x)=x2+1f(x)=x^{2}+1, find the derivative at x=2x=2, f(2)f(2), the tangent line, and graph them.

See Solution

Problem 13812

Analyze the function V(r)=1r6Ar3V(r)=\frac{1}{r^{6}}-\frac{A}{r^{3}} for behavior as rr \to \infty, find minimizing rr, and consider A<0A<0.

See Solution

Problem 13813

Analyze the function V(r)=erAearV(r)=e^{-r}-A e^{-a r} for a=12a=\frac{1}{2}, A=1A=1: behavior as r0r \to 0 and rr \to \infty. Find rr that minimizes V(r)V(r).

See Solution

Problem 13814

Analyze the function V(r)=erAearV(r)=e^{-r}-A e^{-a r} for a=12a=\frac{1}{2} and A=1A=1. What happens as r0r \rightarrow 0 and rr \rightarrow \infty?

See Solution

Problem 13815

Analyze the function V(r)=erAearV(r)=e^{-r}-A e^{-a r} for a=12a=\frac{1}{2}, A=1A=1 and find its minimum value for r>0r>0.

See Solution

Problem 13816

Given the function V(r)=erAe12rV(r)=e^{-r}-Ae^{-\frac{1}{2}r} for r>0r>0, analyze its behavior as r0r \rightarrow 0 and \infty. Find rr that minimizes V(r)V(r). Discuss changes in energy interaction with A=4A=4.

See Solution

Problem 13817

Given dNdt=rN\frac{\mathrm{dN}}{\mathrm{dt}}=\mathrm{rN}, find the per capita growth rate and whether N(1)\mathrm{N}(1) is > or < 20 if r<0\mathrm{r}<0 and N(0)=20\mathrm{N}(0)=20.

See Solution

Problem 13818

Graph the function g(x)=x23g(x)=\left|x^{2}-3\right| and identify where it's not differentiable. Provide exact values.

See Solution

Problem 13819

What lot size xx minimizes total inventory costs given C(x)=2.5x+90000x1+30000C(x)=2.5 x+90000 x^{-1}+30000? Find the minimum cost in \$.

See Solution

Problem 13820

Approximate the area under y=x2y=x^{2} from x=0x=0 to x=3x=3 using a Right Endpoint method with 6 subdivisions.

See Solution

Problem 13821

What lot size minimizes Glorious Gadgets' inventory costs given C(x)=2.5x+90000x1+30000C(x)=2.5x+90000x^{-1}+30000? What's the minimum cost?

See Solution

Problem 13822

Find the area represented by the definite integral 26(4x16)dx\int_{2}^{6}(4 x-16) d x.

See Solution

Problem 13823

A train's position is given by s(t)=60ts(t)=\frac{60}{t} for 3t83 \leq t \leq 8.
(a) Graph s(t)s(t). (b) Find the average velocity from t=3t=3 to t=8t=8. Average velocity: \square (round to nearest tenth).

See Solution

Problem 13824

Find the derivative of f(x)=23x2f(x)=2^{3 x^{2}}.

See Solution

Problem 13825

Calculate the average value of g(t)=3t+4g(t)=3^{t}+4 on [1,6][1,6] and round to the nearest hundredth.

See Solution

Problem 13826

Calculate Cfds\int_{C} f d s for the curve where f(x,y,z)=2x2+72zf(x, y, z) = 2x^{2} + 72z and c(t)=(et,3t2,t)\mathbf{c}(t) = (e^{t}, 3t^{2}, t) for 0t10 \leq t \leq 1.

See Solution

Problem 13827

Write the left Riemann sum for f(x)=3xf(x)=\frac{3}{x} on [1,6][1,6] with n=30n=30 and evaluate it. Choose A, B, C, or D.

See Solution

Problem 13828

Find the average value of a yacht over its first 6 years, given V(t)=250000e0.11tV(t)=250000 e^{-0.11 t}. Vave=$V_{\text{ave}}=\$

See Solution

Problem 13829

Evaluate the integral Cxy4ds\int_{C} x y^{4} d s for the right half of the circle x2+y2=9x^{2}+y^{2}=9 in clockwise direction.

See Solution

Problem 13830

Expand the function f(z)=1105zf(z)=\frac{1}{10-5z} in a Maclaurin series and find the radius of convergence RR.

See Solution

Problem 13831

Find the derivative of f(x)=[sin(4e2x+1)]2f(x)=\left[\sin \left(4 e^{2 x}+1\right)\right]^{2}.

See Solution

Problem 13832

Evaluate the line integral Cxydx+ydy\int_{C} x y d x + y d y for x=8t,y=14tx=8t, y=14t, where 0t10 \leq t \leq 1.

See Solution

Problem 13833

Calculate the work of the vector field F(x,y,z)=xi+9xyj(x+z)k\mathbf{F}(x, y, z)=x \mathbf{i}+9 x y \mathbf{j}-(x+z) \mathbf{k} from (1,4,2)(1,4,2) to (0,5,1)(0,5,1).

See Solution

Problem 13834

Calculate the line integral Cfds\int_{C} f d s where f(x,y,z)=2x2+72zf(x, y, z)=2 x^{2}+72 z and c(t)=(et,3t2,t)\mathbf{c}(t)=\left(e^{t}, 3 t^{2}, t\right) for 0t10 \leq t \leq 1.

See Solution

Problem 13835

Evaluate the integral Cy2dx+(xyx2)dy\int_{C} y^{2} dx + (xy - x^{2}) dy along the path C:y=9xC: y=9x from (0,0)(0,0) to (1,9)(1,9).

See Solution

Problem 13836

Find yy using implicit differentiation from y=x2+4y2y^{\prime \prime} = x^{2} + 4y^{2} or x2+4y2=4x^{2} + 4y^{2} = 4.

See Solution

Problem 13837

Differentiate the function y=log4(excos(πx))y=\log_{4}(e^{-x} \cos(\pi x)).

See Solution

Problem 13838

Find the average temperature of coffee over the first 30 minutes given T(t)=20+75et/50T(t)=20+75 e^{-t / 50}.

See Solution

Problem 13839

If f(x)f(x) has a local minimum at x=cx=c with f(x)<0f^{\prime}(x)<0 for x<cx<c and f(x)>0f^{\prime}(x)>0 for x>cx>c, then x=cx=c is a: a) absolute maximum b) local minimum c) absolute minimum d) local maximum

See Solution

Problem 13840

Determine where the function f(x)=x443x31f(x)=\frac{x^{4}}{4}-3 x^{3}-1 is concave down: (,0)(-\infty, 0), (,6)(-\infty, 6), (0,6)(0,6), (6,)(6, \infty), or never.

See Solution

Problem 13841

Determine if x=1x=1 is a local minimum, local maximum, absolute minimum, or absolute maximum for ff given f(x)=2x1f^{\prime \prime}(x)=2x-1.

See Solution

Problem 13842

Bestimmen Sie den Differenzenquotienten von f(x)=12x24f(x)=\frac{1}{2} x^{2}-4 für die Intervalle: a) I=[0;2]I=[0 ; 2], b) I=[1;1]I=[-1 ; 1], c) I=[1;2]I=[-1 ; 2], d) I=[2;1]I=[-2 ; 1].

See Solution

Problem 13843

Find the line integral of 5y2i+3xj5 y^{2} \vec{i}+3 x \vec{j} along the segment from (6,2)(6,2) to (0,0)(0,0).

See Solution

Problem 13844

Find the local min and max of g(x)=x9x2g(x)=x \sqrt{9-x^{2}}.

See Solution

Problem 13845

Dans un repère (0,ı,ȷ,k)(0, \vec{\imath}, \vec{\jmath}, \vec{k}), le vecteur-position est OMundefined=3tı+(4t2+2t+3)ȷ+5k\overrightarrow{O M}=3 t \vec{\imath}+(-4 t^{2}+2 t+3) \vec{\jmath}+5 \vec{k}.
1) Équations horaires du mouvement. 2) Coordonnées du vecteur-vitesse. 3) Norme du vecteur-vitesse. 4) Coordonnées du vecteur-accélération.

See Solution

Problem 13846

Find the partial derivative of x3xy+y3=23x^{3}-x y+y^{3}=23 with respect to xx.

See Solution

Problem 13847

Find the derivatives of these functions: a) f(x)=x2+1x1f(x)=\frac{x^{2}+1}{x-1} b) g(x)=(x2+3x5)23g(x)=\left(x^{2}+3x-5\right) \frac{2}{3}

See Solution

Problem 13848

Find the derivative of f(x)=csc(2x)4x2+3f(x)=\csc(2x)\sqrt{4x^{2}+3}.

See Solution

Problem 13849

Compute the line integral Cfds\int_{C} f d s where f(x,y,z)=2x2+72zf(x, y, z) = 2x^{2} + 72z and c(t)=(et,3t2,t)\mathbf{c}(t) = (e^{t}, 3t^{2}, t) for 0t10 \leq t \leq 1.

See Solution

Problem 13850

Find the tangent line equation for f(x)=x(x+1)2f(x)=\frac{-x}{(x+1)^{2}} at x=2x=-2.

See Solution

Problem 13851

Evaluate f(x)=16x2/3f(x)=16-x^{2/3} at x=64x=-64 and x=64x=64. Find cc in (64,64)(-64,64) where f(c)=0f'(c)=0. Discuss Rolle's Theorem.

See Solution

Problem 13852

Expand f(z)=12zf(z)=\frac{1}{2-z} in a Taylor series at z0=4iz_{0}=4i and find the radius of convergence RR.

See Solution

Problem 13853

Find the tangent line equation at the point (1,0) for the curve x2xyy2=1x^{2}-x y-y^{2}=1.

See Solution

Problem 13854

Find the tangent line to the curve ysin(12x)=xcos(2y)y \sin(12x) = x \cos(2y) at the point (π2,π4)(\frac{\pi}{2}, \frac{\pi}{4}) using implicit differentiation.

See Solution

Problem 13855

Find the tangent line equation to ysin(12x)=xcos(2y)y \sin (12 x) = x \cos (2 y) at (π/2,π/4)(\pi / 2, \pi / 4).

See Solution

Problem 13856

Find the tangent line equation for y=16x12x2+2y=16 x-\frac{12}{x^{2}}+2 at x=2x=2.

See Solution

Problem 13857

Coût de production d'xx PlayStations 6: C(x)=800,000+340x+0.0005x2C(x)=800,000+340x+0.0005x^{2}. Trouvez xx pour minimiser le coût moyen.

See Solution

Problem 13858

Rewrite the integral 26(5x36x)dx\int_{2}^{6}(5 x^{3}-6 x) dx as the difference of two integrals. Choose the correct option.

See Solution

Problem 13859

Find the tangent line equation to the curve x2xyy2=1x^{2}-x y-y^{2}=1 at the point (1,0)(1,0).

See Solution

Problem 13860

Given the function f(x)=x33x+5f(x)=x^{3}-3 x+5 on [2,2][-2,2], is ff continuous there? Find f(x)f^{\prime}(x), f(2)f(-2), f(2)f(2), and f(b)f(a)ba\frac{f(b)-f(a)}{b-a}. Can the mean value theorem apply?

See Solution

Problem 13861

Explain why aaf(x)dx=0\int_{a}^{a} f(x) d x=0. Choose the correct answer: A, B, C, or D.

See Solution

Problem 13862

Find the derivative of y=(ln(x))cos(6x)y=(\ln (x))^{\cos (6 x)} using logarithmic differentiation.

See Solution

Problem 13863

Find local maxima, minima, and intervals of increase/decrease for f(x)=(x1)(x+1)(x+4)f^{\prime}(x)=(x-1)(x+1)(x+4). Sketch a possible graph.

See Solution

Problem 13864

Find the derivative of f(x)=x(x2)f(x)=\sqrt{x}(\sqrt{x}-2).

See Solution

Problem 13865

Find local extrema and inflection points for functions: f(x)=x36x2+5f(x)=x^{3}-6x^{2}+5, g(x)=x9x2g(x)=x\sqrt{9-x^{2}}, h(x)=xex29h(x)=xe^{-\frac{x^{2}}{9}}, j(x)=ln(x4+27)j(x)=\ln(x^{4}+27), k(x)=x6xk(x)=x\sqrt{6-x}, l(x)=x213l(x)=\sqrt[3]{x^{2}-1}. Also, calculate elasticity for q=50010pq=500-10p at p=$30p=\$30.

See Solution

Problem 13866

Given the function f(x)=x34x216x+6f(x)=x^{3}-4 x^{2}-16 x+6 on [4,4][-4,4], is ff continuous? Find f(x)f^{\prime}(x) and f(4)f(-4), f(4)f(4). Can Rolle's theorem apply?

See Solution

Problem 13867

Find points on the curve y=21xy=2-\frac{1}{x} where the tangent slope equals 14\frac{1}{4}.

See Solution

Problem 13868

Find the tangent line to the curve ysin(12x)=xcos(2y)y \sin (12 x) = x \cos (2 y) at the point (π/2,π/4)(\pi / 2, \pi / 4).

See Solution

Problem 13869

Estimate the area under f(x)=4x5f(x)=-4x-5 from x=0x=0 to x=4x=4 using a left Riemann sum.

See Solution

Problem 13870

Prove that x314x+c=0x^{3}-14 x+c=0 has at most one solution in [2,2][-2,2] using Rolle's theorem.

See Solution

Problem 13871

Déterminez les limites limxf(x)\lim _{x \rightarrow-\infty} f(x) et limxf(x)\lim _{x \rightarrow \infty} f(x) pour f(x)=xe12x2f(x)=x e^{1-2 x^{2}}.

See Solution

Problem 13872

Coût de production pour xx PlayStations 6 : C(x)=800,000+340x+0.0005x2C(x)=800,000+340 x+0.0005 x^{2}. Trouver xx pour coût moyen minimal et calculer ce coût.

See Solution

Problem 13873

Evaluate the integral 04(x24)dx=(\int_{0}^{4}(x^{2}-4) dx=\square( Simplify your answer.)

See Solution

Problem 13874

Evaluate the integral 04(x24)dx\int_{0}^{4}(x^{2}-4) dx using the Riemann Sum. Choose the correct option from A, B, C, or D.

See Solution

Problem 13875

Evaluate the integral 2π1515.8(0.82(x15.8)2)×1+[55x+79555x2+158x1245]2dx2 \pi \int_{15}^{15.8}\left(\sqrt{0.8^{2}-(x-15.8)^{2}}\right) \times \sqrt{1+\left[\frac{-5 \sqrt{5} x+79 \sqrt{5}}{5 \sqrt{-5 x^{2}+158 x-1245}}\right]^{2}} dx using numerical methods.

See Solution

Problem 13876

Evaluate the integral 349f(x)dx\int_{3}^{4} 9 f(x) d x given 37f(x)dx=14\int_{3}^{7} f(x) d x=14 and 47f(x)dx=8\int_{4}^{7} f(x) d x=8.

See Solution

Problem 13877

Find the derivative of the function ex3y2\frac{-e^{x}}{3 y^{2}} with respect to 'x'.

See Solution

Problem 13878

Evaluate the integrals given the functions ff and gg on [3,7][3,7]: a. 349f(x)dx\int_{3}^{4} 9 f(x) d x b. 37(f(x)g(x))dx\int_{3}^{7}(f(x)-g(x)) d x

See Solution

Problem 13879

Evaluate the integrals based on given functions ff and gg on [3,7][3,7] with specific integral values. a. 349f(x)dx\int_{3}^{4} 9 f(x) d x b. 37(f(x)g(x))dx\int_{3}^{7}(f(x)-g(x)) d x c. 34(f(x)g(x))dx\int_{3}^{4}(f(x)-g(x)) d x

See Solution

Problem 13880

Find the derivative of f(y)=ex3y2f(y) = \frac{-e^{x}}{3 y^{2}} with respect to yy.

See Solution

Problem 13881

Evaluate the following integrals given 37f(x)dx=14\int_{3}^{7} f(x) d x=14, 37g(x)dx=7\int_{3}^{7} g(x) d x=7:
a. 349f(x)dx\int_{3}^{4} 9 f(x) d x b. 37(f(x)g(x))dx\int_{3}^{7}(f(x)-g(x)) d x c. 34(f(x)g(x))dx\int_{3}^{4}(f(x)-g(x)) d x d. 47(g(x)f(x))dx\int_{4}^{7}(g(x)-f(x)) d x e. 476g(x)dx\int_{4}^{7} 6 g(x) d x

See Solution

Problem 13882

Evaluate 516x(8x)dx\int_{5}^{1} 6 x(8-x) d x using 156x(8x)dx=328\int_{1}^{5} 6 x(8-x) d x=328. Choose A or B.

See Solution

Problem 13883

Evaluate the integrals given the functions ff and gg on [3,7][3,7] with the following properties:
a. 349f(x)dx\int_{3}^{4} 9 f(x) d x b. 37(f(x)g(x))dx\int_{3}^{7}(f(x)-g(x)) d x c. 34(f(x)g(x))dx\int_{3}^{4}(f(x)-g(x)) d x d. 47(g(x)f(x))dx\int_{4}^{7}(g(x)-f(x)) d x

See Solution

Problem 13884

Evaluate the integrals using 156x(8x)dx=328\int_{1}^{5} 6 x(8-x) d x=328.
a. Find 516x(8x)dx\int_{5}^{1} 6 x(8-x) d x. b. Find 15x(8x)dx\int_{1}^{5} x(8-x) d x.

See Solution

Problem 13885

Evaluate the following integrals given 37f(x)dx=14\int_{3}^{7} f(x) d x=14, 37g(x)dx=7\int_{3}^{7} g(x) d x=7, 47f(x)dx=8\int_{4}^{7} f(x) d x=8, and 34g(x)dx=3\int_{3}^{4} g(x) d x=3:
a. 349f(x)dx\int_{3}^{4} 9 f(x) d x b. 37(f(x)g(x))dx\int_{3}^{7}(f(x)-g(x)) d x c. 34(f(x)g(x))dx\int_{3}^{4}(f(x)-g(x)) d x d. 47(g(x)f(x))dx\int_{4}^{7}(g(x)-f(x)) d x e. 476g(x)dx\int_{4}^{7} 6 g(x) d x f. 434f(x)dx=\int_{4}^{3} 4 f(x) d x=\square

See Solution

Problem 13886

Find the absolute extreme values of f(x)=(x+3)43f(x)=(x+3)^{\frac{4}{3}} on [5,5][-5,5]. Max: A/B, Min: A/B.

See Solution

Problem 13887

Find the radius of convergence for the series (cn+dn)xn\sum(c_{n}+d_{n}) x^{n} given that cnxn\sum c_{n} x^{n} has radius 2 and dnxn\sum d_{n} x^{n} has radius 3.

See Solution

Problem 13888

Determine the local max and min of ff using First and Second Derivative Tests: f(x)=8+9x26x3f(x)=8+9x^{2}-6x^{3}.

See Solution

Problem 13889

Evaluate 72g(x)dx\int_{7}^{2} g(x) d x given 27g(x)dx=8\int_{2}^{7} g(x) d x=8.

See Solution

Problem 13890

Calculate the integral x5(2x3)(x1)dx\int \frac{x-5}{(2 x-3)(x-1)} d x.

See Solution

Problem 13891

Given the function f(x)=e2/xf(x)=e^{-2 / x}, find:
(a) Vertical asymptote(s): x=x=; Horizontal asymptote(s): y=y=. (b) Intervals of increase and decrease in interval notation. (c) Local max and min values. (d) Intervals of concavity: up and down, plus the inflection point (x,y)=()(x, y)=(\square).

See Solution

Problem 13892

Given 24f(x)dx=4\int_{2}^{4} f(x) d x=-4, 27f(x)dx=4\int_{2}^{7} f(x) d x=4, and 27g(x)dx=8\int_{2}^{7} g(x) d x=8, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 273g(x)dx\int_{2}^{7} 3 g(x) d x
3. 27[g(x)f(x)]dx=\int_{2}^{7}[g(x)-f(x)] d x=\square

See Solution

Problem 13893

Evaluate the following integrals using 156x(8x)dx=328\int_{1}^{5} 6 x(8-x) d x=328:
A. 1x(8x)dx\int_{1} x(8-x) d x B. The integral cannot be calculated. C. 5112x(8x)dx\int_{5}^{1} 12 x(8-x) d x D. 196x(8x)dx=\int_{1}^{9} 6 x(8-x) d x=\square E. The integral cannot be calculated.

See Solution

Problem 13894

Analyze the series Σan\Sigma a_{n} for these limits: (a) 8, (b) 0.8, (c) 1. What can you conclude?

See Solution

Problem 13895

Evaluate the following integrals using 156x(8x)dx=328\int_{1}^{5} 6 x(8-x) d x=328:
A. 56x(8x)dx\int_{5} 6 x(8-x) d x B. 15x(8x)dx\int_{1}^{5} x(8-x) d x C. 5112x(8x)dx\int_{5}^{1} 12 x(8-x) d x

See Solution

Problem 13896

Find the derivative of f(x)=xxcos(x)f(x)=x^{x} \cos (x) using logarithmic differentiation.

See Solution

Problem 13897

Given 24f(x)dx=4\int_{2}^{4} f(x) d x=-4, 24f(x)dx=4\int_{2}^{4} f(x) d x=4, 26g(x)dx=8\int_{2}^{6} g(x) d x=8, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x.
2. 273g(x)dx\int_{2}^{7} 3 g(x) d x.
3. 27[g(x)f(x)]dx\int_{2}^{7}[g(x)-f(x)] d x.
4. 27[3g(x)f(x)]dx=\int_{2}^{7}[3 g(x)-f(x)] d x=\square.

See Solution

Problem 13898

Given 24f(x)dx=4\int_{2}^{4} f(x) d x=-4, 27f(x)dx=4\int_{2}^{7} f(x) d x=4, and 27g(x)dx=8\int_{2}^{7} g(x) d x=8, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x.
2. 273g(x)dx\int_{2}^{7} 3 g(x) d x.
3. 27[g(x)f(x)]dx\int_{2}^{7}[g(x)-f(x)] d x.
4. 27[3g(x)f(x)]dx=\int_{2}^{7}[3 g(x)-f(x)] d x=\square.

See Solution

Problem 13899

Given 24f(x)dx=4\int_{2}^{4} f(x) d x=-4, 27f(x)dx=4\int_{2}^{7} f(x) d x=4, and 27g(x)dx=8\int_{2}^{7} g(x) d x=8, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 273g(x)dx=\int_{2}^{7} 3 g(x) d x=\square

See Solution

Problem 13900

Sketch the graph of f(x)=25+5xf(x)=-25+5x on [0,20][0,20] and find the net area using left, right, and midpoint Riemann sums with n=4n=4.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord