Calculus

Problem 25401

Find the derivative P(t)P^{\prime}(t) of P(t)=170+15tt2P(t)=170+15t-t^{2}, and calculate P(5)P(5) and P(5)P^{\prime}(5).

See Solution

Problem 25402

Differentiate g(N)=rN(1NK)g(N)=r N\left(1-\frac{N}{K}\right) with respect to NN.

See Solution

Problem 25403

Utilisez la diffërentielle pour approximer cos91\cos 91^{\circ}.

See Solution

Problem 25404

Find the tangent line equation for h(x)=x4+2xh(x)=x \sqrt{4+2 x} at x=6x=6.

See Solution

Problem 25405

Find the maximum height and time to reach it for h(t)=4.9t2+24t+8h(t)=-4.9 t^{2}+24 t+8.

See Solution

Problem 25406

Find the area between C(t)=5C'(t)=5 and R(t)=9e0.4tR'(t)=9 e^{-0.4 t} from t=0t=0 to the game's useful life. What is the useful life? t=t=\square years.

See Solution

Problem 25407

Find the derivative f(x)f^{\prime}(x) for the function f(x)=x2sin5(2x)f(x)=x^{2} \sin ^{5}(2x).

See Solution

Problem 25408

Find f(2)f^{\prime}(2) if f(x)=(h(x))2f(x)=(h(x))^{2}, with g(2)=4g(2)=4, g(2)=3g^{\prime}(2)=-3, h(2)=2h(2)=-2, and h(2)=5h^{\prime}(2)=5.

See Solution

Problem 25409

Given f(1)=1f(-1)=1 and dydx=x2xy+y21\frac{d y}{d x}=-x^{2}-x y+y^{2}-1, which statement about ff at x=1x=-1 is true? (A), (B), (C), or (D)?

See Solution

Problem 25410

Differentiate R(T)=2π519k7c5h3T6R(T)=\frac{2 \pi^{5}}{19} \frac{k^{7}}{c^{5} h^{3}} T^{6} with constants k,c,h>0k, c, h > 0.

See Solution

Problem 25411

A metal pan at 145F145^{\circ} \mathrm{F} is in a freezer at 0F0^{\circ} \mathrm{F}. Find its temp after 15 min using T(t)=T0+(T1T0)ektT(t)=T_0+(T_1-T_0)e^{-kt}.

See Solution

Problem 25412

Determine if the series 207+8049320343+12802401-\frac{20}{7}+\frac{80}{49}-\frac{320}{343}+\frac{1280}{2401} \cdots converges or diverges. If it converges, find the sum.

See Solution

Problem 25413

Determine if the series 207+8049320343+12802401-\frac{20}{7}+\frac{80}{49}-\frac{320}{343}+\frac{1280}{2401} \ldots converges or diverges. If it converges, find the sum.

See Solution

Problem 25414

Find the values of p p where demand is elastic for x=27044p2 x = 2704 - 4p^2 using PED=dQdP×PQ PED = \frac{dQ}{dP} \times \frac{P}{Q} .

See Solution

Problem 25415

Determine if the integral 0+ex2dx\int_{0}^{+\infty} e^{-x^{2}} d x is convergent or divergent.

See Solution

Problem 25416

Find the tangent line to f(x)=ax4f(x)=a x^{4} at x=1x=1, where aa is a positive constant.

See Solution

Problem 25417

Find the percentage rate of change of f(x)=57003x2f(x)=5700-3x^2 at x=25x=25. Answer in the form %\square \%.

See Solution

Problem 25418

Find the tangent line to f(x)=ax4f(x)=a x^{4} at x=1x=1, where aa is a positive constant.

See Solution

Problem 25419

Find the relative rate of change of f(x)=6x2lnxf(x) = 6x^2 - \ln x at x=4x = 4. Answer: \square.

See Solution

Problem 25420

Find the function ff such that 0xf(t)dt=3cosx+9x3\int_{0}^{x} f(t) dt = 3 \cos x + 9x - 3. What is f(x)f(x)? f(x)= f(x) = \square

See Solution

Problem 25421

Find the elasticity of demand E(p)E(p) using the price-demand equation x=f(p)=17,500325px=f(p)=17,500-325 p.

See Solution

Problem 25422

Find the derivative dydx\frac{d y}{d x} for the equation tany=5x2+2\tan y=5 x^{2}+2.

See Solution

Problem 25423

Find the radius and interval of convergence for the series n=1[2462n357(2n+1)]x2n+1\sum_{n=1}^{\infty}\left[\frac{2 \cdot 4 \cdot 6 \cdots 2 n}{3 \cdot 5 \cdot 7 \cdots(2 n+1)}\right] x^{2 n+1}.

See Solution

Problem 25424

Find the elasticity of demand E(p)E(p) using the price-demand equation x=f(p)=48003p2x=f(p)=4800-3 p^{2}.

See Solution

Problem 25425

Find dydx\frac{d y}{d x} when x=4x=4 for the equation x2+2xy8=0x^{2}+2xy-8=0. A) 32\frac{3}{2} B) 32-\frac{3}{2} C) 34-\frac{3}{4} D) 54-\frac{5}{4}

See Solution

Problem 25426

Find points where f(x)=π8sinxf(x)=\frac{\pi}{8} \sin x equals its average value on [0,π][0, \pi]. Answer: x=x=\square.

See Solution

Problem 25427

Find points on the curve y=x3+3x+3y=x^{3}+3x+3 where the tangent line is parallel to 5xy=25x-y=-2.

See Solution

Problem 25428

Soit f(x)={3x21si x<17x2+1xsi x1f(x) = \begin{cases} 3x^2 - 1 & \text{si } x < 1 \\ \frac{7x^2 + 1}{x} & \text{si } x \geq 1 \end{cases}.
a) Trouver f(x)f'(x) pour x1x \neq 1.
b) Calculer limx1+f(x)\lim_{x \to 1^{+}} f'(x) et limx1f(x)\lim_{x \to 1^{-}} f'(x).
c) Vérifier si ff est dérivable en x=1x=1.
d) Identifier les nombres critiques de ff.

See Solution

Problem 25429

Find the limit as xx approaches -\infty for 57x9x+8\frac{5-7x}{9x+8}.

See Solution

Problem 25430

Evaluate the integral 2x(x2+7)3dx\int 2 x\left(x^{2}+7\right)^{3} d x using the substitution u=x2+7u=x^{2}+7. Rewrite in terms of uu.

See Solution

Problem 25431

Find the new limits of integration for u=x2+9u=x^{2}+9 in 39f(x)dx\int_{3}^{9} f(x) d x. New lower limit is \square.

See Solution

Problem 25432

Find the relative rate of change for robberies in 1999 using r(t)=10.53.3lntr(t)=10.5-3.3 \ln t. Round to the nearest hundredth.

See Solution

Problem 25433

Evaluate the integral using u=x2+5u=x^{2}+5: 2x(x2+5)5dx=()du\int 2 x\left(x^{2}+5\right)^{5} d x=\int(\square) d u

See Solution

Problem 25434

Find the derivative: ddx(16x21lntt2+1dt)\frac{d}{d x}\left(\int_{1}^{6 x^{2}-1} \frac{\ln t}{\sqrt{t^{2}+1}} d t\right).

See Solution

Problem 25435

Find the relative max and min of f(x,y)=x2+y2+16x12yf(x, y) = x^{2} + y^{2} + 16x - 12y.

See Solution

Problem 25436

Evaluate the integral 2x(x2+5)5dx\int 2 x\left(x^{2}+5\right)^{5} d x using the substitution u=x2+5u=x^{2}+5. What is the result?

See Solution

Problem 25437

Find the limit: limx25x25x5\lim _{x \rightarrow 25} \frac{x-25}{\sqrt{x}-5}. Simplify your answer.

See Solution

Problem 25438

A business plans to buy equipment generating \13,000/yearfor7yearsata6.6%continuousinterestrate.Findthepresentvalue.Futurevalue:$13,000/year for 7 years at a 6.6\% continuous interest rate. Find the present value. Future value: \$\square (round to nearest dollar).

See Solution

Problem 25439

Find pp values for elastic and inelastic demand using x=f(p)=6248px=f(p)=\sqrt{624-8p}. Demand is inelastic for pp in the interval \square.

See Solution

Problem 25440

Determine the relative max and min of the function f(x,y)=6x27y2f(x, y) = 6x^{2} - 7y^{2}.

See Solution

Problem 25441

Find the relative max and min of the function f(x,y)=e8x2+2y2+6f(x, y) = e^{8x^2 + 2y^2 + 6}.

See Solution

Problem 25442

Calculate the producers' surplus at price pˉ=$70\bar{p}=\$ 70 for the supply equation p=S(x)=15+0.1x+0.0003x2p=S(x)=15+0.1x+0.0003x^2.

See Solution

Problem 25443

Evaluate the integral: 2x(x27)102dx=\int 2 x\left(x^{2}-7\right)^{102} d x=\square

See Solution

Problem 25444

Calculate the integral: 4x2916x3dx=\int \frac{4 x^{2}}{\sqrt{9-16 x^{3}}} d x=\square

See Solution

Problem 25445

Evaluate the integral 6x+5dx\int \sqrt{6 x+5} \, dx using the substitution u=ax+bu=ax+b.

See Solution

Problem 25446

Find an antiderivative of sin20x\sin 20 x and verify by differentiating. What is sin20xdx=\int \sin 20 x \, dx = \square?

See Solution

Problem 25447

Rewrite the integral as ()du\int(\square) du using the substitution u=x27u = x^{2} - 7.

See Solution

Problem 25448

Find the limit: limx52x2+1\lim _{x \rightarrow \infty} \frac{-5}{2^{x^{2}+1}}.

See Solution

Problem 25449

Find the position of a particle with acceleration a(t)=6t4a(t)=6t-4, given v(3)=25v(3)=25 and x(1)=8x(1)=8. What is x(t)x(t)?

See Solution

Problem 25450

Find the integral of 1(2x1)2\frac{1}{(2x-1)^{2}} with respect to xx.

See Solution

Problem 25451

Find the max population density from P(x,y)=20x220y2+440x+280y+200P(x,y) = -20x^2 - 20y^2 + 440x + 280y + 200. Where does it occur?

See Solution

Problem 25452

Calculate the integral: x7(x8+4)4dx\int x^{7}(x^{8}+4)^{4} \, dx

See Solution

Problem 25453

Find the integral of cosxcsc7xdx\int \cos x \csc ^{7} x \, dx.

See Solution

Problem 25454

Find the integral: sec8wtan8wdw=\int \sec 8w \tan 8w \, dw = \square

See Solution

Problem 25455

Find the partial derivatives zx\frac{\partial z}{\partial x}, zy\frac{\partial z}{\partial y}, and evaluate them at (3,4)(-3,4) for z=5x3+y2+7xyz=-5 x^{3}+y^{2}+7 x y.

See Solution

Problem 25456

Calculate the integral 0π/6cos9xdx=\int_{0}^{\pi / 6} \cos 9 x \, dx = \square (Provide the exact answer.)

See Solution

Problem 25457

La fonction k(x)k(x) a-t-elle un point de rebroussement ou anguleux ? Justifiez votre réponse.

See Solution

Problem 25458

Evaluate the integral: 232x(x2+1)3dx=\int_{2}^{3} \frac{2 x}{\left(x^{2}+1\right)^{3}} d x=\square

See Solution

Problem 25459

Find the partial derivatives fxf_{x} and fyf_{y} for f(x,y)=yln(3x+8y)f(x, y)=y \ln (3 x+8 y).

See Solution

Problem 25460

Find fx,fy,fx(3,3)f_{x}, f_{y}, f_{x}(3,-3), and fy(2,1)f_{y}(-2,-1) for f(x,y)=x2+y2f(x, y)=\sqrt{x^{2}+y^{2}}.

See Solution

Problem 25461

Calculate the integral 3sin2xcosxdx=\int 3 \sin^{2} x \cos x \, dx = \square. What is the exact answer?

See Solution

Problem 25462

Find the partial derivatives fxf_{x} and fyf_{y} for the function f(x,y)=3xln(xy)f(x, y)=3 x \ln(xy).

See Solution

Problem 25463

Rewrite the integral using uu: 232x(x2+1)3dx=5()du\int_{2}^{3} \frac{2 x}{(x^{2}+1)^{3}} dx = \int_{5}^{\square}(\square) du

See Solution

Problem 25464

Find the limit: limx2e(x24x2+7x+10)\lim _{x \rightarrow-2} e^{\left(\frac{x^{2}-4}{x^{2}+7 x+10}\right)}

See Solution

Problem 25465

Find all second order derivatives for r(x,y)=xy7x+6yr(x, y)=\frac{xy}{7x+6y}. What is rxx(x,y)=r_{xx}(x, y)=\square?

See Solution

Problem 25466

Find the local max and min of f(x)=x327xf(x)=x^{3}-27x using the first derivative test. What is f(x)f^{\prime}(x)? f(x)=f^{\prime}(x)=\square

See Solution

Problem 25467

Find the partial derivatives zx\frac{\partial z}{\partial x}, zy\frac{\partial z}{\partial y}, and evaluate them at (3,0)(3,0) for z=8x36y27xyz=-8 x^{3}-6 y^{2}-7 x y.

See Solution

Problem 25468

Find the point aa, value f(a)f(a), and slope of f(x)=x2f(x)=x^{2} at (a,f(a))(a, f(a)) given the tangent line y=4x4y=4x-4.

See Solution

Problem 25469

Find the slope of the curve y=x3y=x^{3} at the point (4,64)(4,64). The slope is \square.

See Solution

Problem 25470

Find the relative maximum and minimum points of the function f(x)=x33x2+3f(x)=-x^{3}-3 x^{2}+3 using the first-derivative test.

See Solution

Problem 25471

Find the marginal profit dPdn\frac{d P}{d n} at n=25n=25 given P(q)=500q+10qP(q)=500 \sqrt{q}+10 q and q(n)=10,000n100n2n3q(n)=10,000 n-100 n^{2}-n^{3}.

See Solution

Problem 25472

Find dydx\frac{dy}{dx} for the equation 5x+5=ln(xy)5x + 5 = \ln(xy).

See Solution

Problem 25473

A stone is thrown up; what is its acceleration when its velocity is zero at the top? Answer using a=ga = -g, where gg is gravity.

See Solution

Problem 25474

Find dydx\frac{d y}{d x} for the equation 5x2+2y3=45 x^{2}+2 y^{3}=4.

See Solution

Problem 25475

How much work (in Joules) is needed to pump water from a circular pool (diameter 14 m14 \mathrm{~m}, depth 3 m3 \mathrm{~m})? Use g=9.8ms2g = 9.8 \frac{\mathrm{m}}{\mathrm{s}^{2}} and water density 1000kgm31000 \frac{\mathrm{kg}}{\mathrm{m}^{3}}.

See Solution

Problem 25476

Find dimensions that maximize the printed area of a poster with total area 19440 cm219440 \mathrm{~cm}^{2} and margins of 10 cm10 \mathrm{~cm} (top/bottom) and 6 cm6 \mathrm{~cm} (sides).

See Solution

Problem 25477

Estimate the integral 015ex2dx\int_{0}^{1} 5 e^{-x^{2}} d x using Simpson's Rule with n˙=4\dot{n}=4. Round to three decimals.

See Solution

Problem 25478

Solve the integral: x2(x3+3)3dx\int \frac{x^{2}}{(x^{3}+3)^{3}} dx.

See Solution

Problem 25479

Estimate the integral 012+x2dx\int_{0}^{1} \sqrt{2+x^{2}} \, dx using Simpson's Rule with n=4n=4, rounding to three decimal places.

See Solution

Problem 25480

Evaluate the line integral Cxds\int_{C} x \, ds for the curve r(t)=ti+t2j\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}, 0t10 \leq t \leq 1.

See Solution

Problem 25481

Find the average value favef_{\text{ave}} of f(x)=16x2f(x)=\sqrt{16-x^{2}} from 0 to 4, then find cc where f(c)=favef(c)=f_{\text{ave}}.

See Solution

Problem 25482

Find the limits for the following expressions: 9. limx216\lim _{x \rightarrow 2} 16, 10. limx32x\lim _{x \rightarrow 3} 2 x, 11. limx5(t25)\lim _{x \rightarrow-5}(t^{2}-5), 12. limt1/3(5t7)\lim _{t \rightarrow 1 / 3}(5 t-7), 13. limx1(x33x22x+1)\lim _{x \rightarrow-1}(x^{3}-3 x^{2}-2 x+1), 14. limr94r311\lim _{r \rightarrow 9} \frac{4 r-3}{11}, 15. limt3t2t+5\lim _{t \rightarrow-3} \frac{t-2}{t+5}, 16. limx6x2+6x6\lim _{x \rightarrow-6} \frac{x^{2}+6}{x-6}, 17. limh0hh27h+1\lim _{h \rightarrow 0} \frac{h}{h^{2}-7 h+1}, 18. limh0h33h24h2+1\lim _{h \rightarrow 0} \frac{h^{3}-3 h^{2}-4}{h^{2}+1}, 19. limp4p2+p+5\lim _{p \rightarrow 4} \sqrt{p^{2}+p+5}, 20. limy15y+3\lim _{y \rightarrow 15} \sqrt{y+3}, 21. limx2x2+2xx+2\lim _{x \rightarrow-2} \frac{x^{2}+2 x}{x+2}, 22. limx1x+1x+1\lim _{x \rightarrow-1} \frac{x+1}{x+1}, 23. limx2x2x2x2\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2}, 24. limt0t3+3t2t34t2\lim _{t \rightarrow 0} \frac{t^{3}+3 t^{2}}{t^{3}-4 t^{2}}, 25. limx1x2+2x+1x+1\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x+1}, 26. limt2t24t2\lim _{t \rightarrow 2} \frac{t^{2}-4}{t-2}, 27. limx3x3x29\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}, 28. limx0x22xx\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x}, 29. limx4x29x+20x23x4\lim _{x \rightarrow 4} \frac{x^{2}-9 x+20}{x^{2}-3 x-4}, 30. limx2x416x2x6\lim _{x \rightarrow-2} \frac{x^{4}-16}{x^{2}-x-6}, 31. limx23x2x10x2+5x14\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}+5 x-14}, 32. limx4x2+2x8x2+5x+4\lim _{x \rightarrow-4} \frac{x^{2}+2 x-8}{x^{2}+5 x+4}, 33. limh0(2+h)222h\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}, 34. limx0(x+2)24x\lim _{x \rightarrow 0} \frac{(x+2)^{2}-4}{x}.

See Solution

Problem 25483

Differentiate y=74x+2y=7^{4x+2} with respect to xx.

See Solution

Problem 25484

Find the derivative of y=(f(x)+15g(x))g(x)y=(f(x)+15 g(x)) g(x) with respect to xx.

See Solution

Problem 25485

Differentiate with respect to xx:
32. y=74x+2y=7^{4x+2}
33. y=ln(106x3)y=\ln(10-6x^{3})

See Solution

Problem 25486

Differentiate y=74x+2y=7^{4x+2} with respect to xx.

See Solution

Problem 25487

Solve the equation y2y3y=9t+12y'' - 2y' - 3y = -9t + 12 with y(0)=1y(0) = 1 and y(0)=16y'(0) = 16. Find y(t)y(t).

See Solution

Problem 25488

Differentiate y=74x+2y=7^{4x+2} with respect to xx.

See Solution

Problem 25489

Calculate the integral 0π2tan3xdx\int_{0}^{\frac{\pi}{2}} \tan ^{3} x \, dx.

See Solution

Problem 25490

Evaluate the Riemann sum of f(x)f(x) from [2,4][-2,4] using 3 equal-width rectangles and midpoints.

See Solution

Problem 25491

Find the derivative of y=(2x)ln(6x)y=(2 x)^{\ln (6 x)} using logarithmic differentiation.

See Solution

Problem 25492

Differentiate y=ln(106x3)y=\ln(10-6x^3) with respect to xx.

See Solution

Problem 25493

Find the limit: limx4x29x+20x23x4\lim _{x \rightarrow 4} \frac{x^{2}-9 x+20}{x^{2}-3 x-4}

See Solution

Problem 25494

Find the limits: 27. limx3x3x29\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}, 29. limx4x29x+20x23x4\lim _{x \rightarrow 4} \frac{x^{2}-9 x+20}{x^{2}-3 x-4}, 31. limx23x2x10x2+5x14\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}+5 x-14}, 33. limh0(2+h)222h\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}.

See Solution

Problem 25495

Find the limits:
25. limx1x2+2x+1x+1\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x+1}
27. limx3x3x29\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}
29. limx4x29x+20x23x4\lim _{x \rightarrow 4} \frac{x^{2}-9 x+20}{x^{2}-3 x-4}
31. limx23x2x10x2+5x14\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}+5 x-14}
33. limh0(2+h)222h\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}

See Solution

Problem 25496

Evaluate the integral from 0 to ln(5)\sqrt{\ln (5)} of xex2x e^{x^{2}} dx. What is the result?

See Solution

Problem 25497

Determine if the integral 0812(x1/3)dx\int_{0}^{8} \frac{1}{2\left(x^{1 / 3}\right)} d x converges or diverges.

See Solution

Problem 25498

Find cc where f(c)=0f'(c)=0 for f(x)=e1x2f(x)=e^{1-x^{2}} and check for local extremum. Also, find the tangent line to f(x)=ax4f(x)=a x^{4} at x=1x=1.

See Solution

Problem 25499

Differentiate the function f(x)=1(x4+1)3f(x)=\frac{1}{(x^{4}+1)^{3}}.

See Solution

Problem 25500

Find limits as h0h \rightarrow 0 for given functions and evaluate limx6x22x6\lim _{x \rightarrow 6} \frac{\sqrt{x-2}-2}{x-6}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord