Calculus

Problem 21201

Find the equivalent of cosec(x2)x7dx\int \frac{\operatorname{cosec}(x^{2})}{x^{7}} dx using u=x2u=x^{2}.

See Solution

Problem 21202

Berechne die verbleibende Menge des Medikaments nach 6 Stunden, wenn die Halbwertszeit 2 Stunden beträgt. Ausgang: 400 mg.

See Solution

Problem 21203

Finde die Nullstellen von f(x)=(x28)exf(x)=(x^{2}-8)e^{x} und untersuche die Extremstellen mit f(x)=(x2+4x6)exf^{\prime \prime}(x)=(x^{2}+4x-6)e^{x}.

See Solution

Problem 21204

Find the equivalent expression for x3ln(x2)dx\int x^{3} \ln \left(x^{2}\right) d x using u=x2u=x^{2}.

See Solution

Problem 21205

Evaluate the integral from 1 to π2\frac{\pi}{2} of e3x+sin3x2xe^{3 x} + \sin 3 x - \frac{2}{x}.

See Solution

Problem 21206

Berechne die Ableitungen f(1)f^{\prime}(1), f(2)f^{\prime}(2) und f(4)f^{\prime}(-4) für f(x)=4x+1f(x)=4x+1 und erkläre die Ergebnisse graphisch.

See Solution

Problem 21207

Compute the integral t15(t3)2dt\int t^{\frac{1}{5}}(t-3)^{2} dt.

See Solution

Problem 21208

Calculate the area between the xx-axis and y=x23xy=-x^{2}-3x for 8x4-8 \leq x \leq 4.

See Solution

Problem 21209

Berechne den Weg s(20)s(20) und die mittlere Geschwindigkeit in den ersten 20 Millisekunden für s(t)=0,17t2+0,01ts(t)=0,17 t^{2}+0,01 t.

See Solution

Problem 21210

Frau Meyer kauft ein Auto für 2650026500 Euro. Berechnen Sie den Wert nach 55 Jahren, wann es 8152,668152,66 Euro wert war, und den Zeitpunkt, als es halb so viel wert war. Analysieren Sie den jährlichen Wertverlust und die Änderungsrate.

See Solution

Problem 21211

Modelliere die Verkaufszahlen eines Smartphones mit v(t)=10000te0.02tv(t)=10000 \cdot t \cdot e^{-0.02 t}. Bestätige die Funktion, beschreibe den Verlauf und finde das Maximum.

See Solution

Problem 21212

Bestimmen Sie den Differenzenquotienten von f(x)=x23f(x)=x^{2}-3 für die Intervalle: a) [100,1][-100, -1], b) [10,1][-10, -1], c) [1,1][-1, 1], d) [1,1][-1, 1].

See Solution

Problem 21213

Find the derivative dydx\frac{d y}{d x} for y=0sin1xcostdty=\int_{0}^{\sin^{-1} x} \cos t \, dt.

See Solution

Problem 21214

Gegeben ist die Zuflussrate f(t)=5e0,5tf(t)=5 e^{-0,5 t} für t>0t>0.
a) Bestimme f(0)f(0) und f(10)f(10). b) Beschreibe den Graphen und nenne die Asymptote. c) Zeige, dass f(t)f(t) positiv bleibt. d) Finde die Funktion für die Flüssigkeitsmenge im Tank nach tt Stunden. e) Untersuche, ob der Tank überläuft.

See Solution

Problem 21215

A lift accelerates for 4s to 2m/s2 \, \mathrm{m/s}, moves constant for 5s, then decelerates to rest in 12s total.
1. Sketch a velocity-time graph.
2. Calculate total distance travelled.
3. Find acceleration during last 3s.

Two trains AA and BB accelerate from the same point.
1. Find distance when both have the same velocity and which train is further.
2. Find time when AA is 9m ahead of BB.

See Solution

Problem 21216

Die Zuflussrate in einen Tank wird durch f(t)=5e0,5tf(t)=5 e^{-0,5 t} beschrieben.
a) Bestimme f(0)f(0) und f(10)f(10). b) Beschreibe den Graphen und nenne die Asymptote. c) Zeige, dass die Zuflussrate immer positiv ist.
Der Tank hat zu Beginn 20 m320 \mathrm{~m}^{3}. d) Finde die Funktion für die gesamte Flüssigkeitsmenge nach tt Stunden. e) Untersuche, ob der Tank überläuft.

See Solution

Problem 21217

Berechnen Sie die mittlere Steigung von ff in den Intervallen: a) I=[1;3]I=[1 ; 3], b) I=[2;8]I=[2 ; 8], c) I=[0;1]I=[0 ; 1], d) I=[1;3]I=[1 ; 3].

See Solution

Problem 21218

Berechne den Flächeninhalt zz zwischen den Funktionen f(x)=e0,5xf(x)=e^{-0,5 x} und g(x)=x+1g(x)=x+1 im Intervall [2;0][-2 ; 0].

See Solution

Problem 21219

Bestimme die Tangentengleichung von f(x)=ex+1f(x)=e^{x}+1 bei P(0f(0))P(0 \mid f(0)) und berechne den Flächeninhalt mit den Achsen.

See Solution

Problem 21220

Bestimme die Ableitungsfunktion von f(x)=4x25xf(x)=4 x^{2}-5 x mit der h-Methode und erkläre den Prozess.

See Solution

Problem 21221

State the Fundamental Theorem of Calculus. Define F(x)=25xcos(t3)dtF(x) = \int_{2}^{5x} \cos(t^3) dt and find dFdx\frac{dF}{dx}.

See Solution

Problem 21222

Berechnen Sie das Gewicht nach 10 Wochen mit g(t)=118t3+23t2+18t+48g(t)=-\frac{11}{8} t^{3}+23 t^{2}+18 t+48 und beantworten Sie weitere Fragen zur Gewichtszunahme.

See Solution

Problem 21223

Gegeben ist f(x)=e2x+1f(x)=e^{2x}+1. Skizzieren Sie den Graphen für 3x0,5-3 \leq x \leq 0,5 und untersuchen Sie die Wertemenge.

See Solution

Problem 21224

Bestimme die Werte a1,a2,a3,a5a_1, a_2, a_3, a_5 und die Häufungspunkte von an=Im(i3n)a_n = \text{Im}(i^{3n}). Finde liman\overline{\lim} a_n, supan\sup a_n und lim infan\liminf a_n. Untersuche die Konvergenz von ana_n.

See Solution

Problem 21225

Ein Fallschirmspringer fällt und öffnet den Fallschirm. Berechnen Sie Höhe, Geschwindigkeit und Zeiten für den Sprung.

See Solution

Problem 21226

Berechne an=Re((1+i)n)a_{n}=\operatorname{Re}\left((1+\mathrm{i})^{n}\right) für n=1,2,4,5n=1, 2, 4, 5. Bestimme Häufungspunkte und Konvergenzverhalten.

See Solution

Problem 21227

Find the total distance traveled by the particle with position x(t)=t36t2+9t2x(t)=t^{3}-6 t^{2}+9 t-2 from t=0t=0 to t=5t=5.

See Solution

Problem 21228

Find the increase in total costs when production rises from 164 to 269 units, given marginal cost 232+266x232+\frac{266}{\sqrt{x}}.

See Solution

Problem 21229

Find the increase in total costs when production rises from 109 to 259 units, given marginal cost 218+151x218+\frac{151}{\sqrt{x}}.

See Solution

Problem 21230

Calculate the area between the xx-axis and the curve y=8x37y=8x^{3}-7 from x=2x=2 to x=3x=3.

See Solution

Problem 21231

Find the distance traveled by a particle with velocity v(t)=t8+3t2+1v(t)=t^{8}+3 t^{2}+1 m/s in the first 2 seconds.

See Solution

Problem 21232

Find the increase in total revenue when selling xx cans of air freshener, from 138 to 198, given 8.70.36x8.7-0.36 \sqrt{x}.

See Solution

Problem 21233

How many gallons of gasoline did the car consume in the first hour if the rate is 4t23t+34 t^{2}-3 t+3 gal/hr?

See Solution

Problem 21234

Find the rate of change of the radius when the volume is 4500πcm34500 \pi \mathrm{cm}^{3}, given the volume change rate is 22 cm3/sec22 \mathrm{~cm}^{3}/\mathrm{sec}. Use V=43πr3V=\frac{4}{3} \pi r^{3}. Answer to 4 decimal places.

See Solution

Problem 21235

Find the increase in total revenue when sales go from 127 to 207 bottles, given 6.60.3x6.6-0.3 \sqrt{x} as marginal revenue.

See Solution

Problem 21236

Find the limit: limx52x2+9x53x2+13x10\lim _{x \rightarrow-5} \frac{2 x^{2}+9 x-5}{3 x^{2}+13 x-10}.

See Solution

Problem 21237

Water fills a conical tank at 1ft3/min1 \mathrm{ft}^{3}/\mathrm{min}. Find the rise rate when water is 4ft4 \mathrm{ft} deep in a cone of height 8ft8 \mathrm{ft} and radius 4ft4 \mathrm{ft}.

See Solution

Problem 21238

Find (f1)(b)\left(f^{-1}\right)^{\prime}(b) where b=f(1)b=f(1) for the function f(x)=x3x+tan1xf(x)=x^{3}-x+\tan^{-1} x.

See Solution

Problem 21239

Find the total gasoline consumed in the first hour if the rate is 4t25t+44 t^{2}-5 t+4 gal/hr. Provide the answer as a fraction.

See Solution

Problem 21240

Differentiate the equation 2xy2+x2+3=y2+5x2xy^2 + x^2 + 3 = y^2 + 5x to find dydx\frac{dy}{dx}.

See Solution

Problem 21241

Find the increase in total revenue when selling xx blankets, where xx goes from 188 to 283, given 9.90.19x9.9-0.19 \sqrt{x}.

See Solution

Problem 21242

Calculate the area under the curve y=f(x)y=f(x) from x=0x=0 to x=1x=1. Use f(x)=9(7x+8)2f(x)=\frac{9}{(7 x+8)^{-2}}.

See Solution

Problem 21243

Calculate the area between the xx-axis and the curve y=f(x)y=f(x) from x=5x=5 to x=8x=8, where f(x)=37x2f(x)=\frac{3}{\sqrt{7 x-2}}.

See Solution

Problem 21244

Untersuchen Sie das Verhalten der Funktion ff für x+x \rightarrow+\infty und xx \rightarrow-\infty für die folgenden Fälle: a) f(x)=e2xf(x)=e^{-2 x}, b) f(x)=xe3xf(x)=x \cdot e^{-3 x}, c) f(x)=x3exf(x)=x^{3} \cdot e^{-x}, d) f(x)=ex+4f(x)=e^{x}+4, e) f(x)=2+x2exf(x)=2+x^{2} \cdot e^{-x}, f) f(x)=3xe5xf(x)=3-x \cdot e^{5 x}, g) f(x)=(3x6+2x4)exf(x)=\left(3 x^{6}+2 x^{4}\right) \cdot e^{-x}, h) f(x)=xe0,1x+1f(x)=x \cdot e^{0,1 x}+1, i) f(x)=x2e0,01x1f(x)=x^{2} \cdot e^{0,01 x}-1, j) f(x)=x3+x+1exf(x)=\frac{x^{3}+x+1}{e^{x}}, k) f(x)=x22x+7exf(x)=\frac{x^{2}-2 x+7}{e^{x}}, l) f(x)=1000e0,1x4f(x)=1000 \cdot e^{-0,1 x}-4.

See Solution

Problem 21245

Find the limit: limx0sin(3x)xx2+9x\lim _{x \rightarrow 0} \frac{\sin (3 x)-x}{x^{2}+9 x}.

See Solution

Problem 21246

Evaluate the integral: 11x2dx\int_{1}^{\infty} \frac{1}{x^{2}} d x.

See Solution

Problem 21247

Find the profit for the first 30 items given P(x)=180.049e0.1xP^{\prime}(x)=18-0.049 e^{0.1 x}. Round to the nearest cent.

See Solution

Problem 21248

Find the limit: limx0sin(7x)11x\lim _{x \rightarrow 0} \frac{\sin (7 x)}{11 x}.

See Solution

Problem 21249

Find the population increase over 6 years given the rate P(t)=466t13P^{\prime}(t)=46-6 t^{\frac{1}{3}}. Round to the nearest whole animal.

See Solution

Problem 21250

Prove that f(x)=3x+5+lnxf(x)=-3 \sqrt{x}+5+\ln x has a solution in [4,5][4,5] using the Intermediate Value Theorem.

See Solution

Problem 21251

Bestimmen Sie die Folgenglieder ana_n, Häufungspunkte, nNan\prod_{n \in \mathbb{N}} a_n, supnNan\sup_{n \in \mathbb{N}} a_n, limnNan\varliminf_{n \in \mathbb{N}} a_n und das Konvergenzverhalten.

See Solution

Problem 21252

Find critical points for these functions: (a) f(x)=x3+3x224x+7f(x)=x^{3}+3x^{2}-24x+7, (b) g(x)=x25x5g(x)=\sqrt[5]{x^{2}-5x}, (c) f(x)=5xe92xf(x)=5xe^{9-2x}.

See Solution

Problem 21253

Evaluate the integral 1xexdx\int_{1}^{\infty} x e^{-x} \, dx.

See Solution

Problem 21254

Find global maxima and minima for these functions on the given intervals:
(a) h(x)=(x+4)3h(x)=-(x+4)^{3} on [6,2][-6,2] (b) q(x)=e3xq(x)=e^{3-x} on [2,1][-2,1] (c) g(x)=xexg(x)=x e^{-x} on [1,1][-1,1] (d) f(x)=x4x2f(x)=x \sqrt{4-x^{2}} on [2,2][-2,2]

See Solution

Problem 21255

Prove that x=1x=-1 is a local maximum for the function f(x)=2x+ln(x2)f(x)=2x+\ln\left(x^{2}\right).

See Solution

Problem 21256

Bestimmen Sie die Grenzwerte:
1. limnsin(n)(3n)2\lim _{n \rightarrow \infty} \frac{\sin (n)}{(3 n)^{2}}
2. limm(1+mm)n2\lim _{m \rightarrow \infty}\left(\frac{1+m}{m}\right)^{-n 2}
3. limn(n24nn)\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}-4 n}-n\right)
4. limk(sin(πk)174)2\lim _{k \rightarrow \infty}\left(\frac{\sin (\pi k)}{17}-4\right)^{2}
5. limnsin2+785n2\lim _{n \rightarrow \infty} \frac{\sin ^{2}+7}{8-5 n^{2}}
6. limn3n+cos(πn)n\lim _{n \rightarrow \infty} \frac{3 n+\cos (\pi n)}{n}

See Solution

Problem 21257

Find the function f(x)f(x) where f(x)=6x2f'(x)=6 x^{2} and f(1)=7f(1)=7.

See Solution

Problem 21258

1. Prove f(x)=0f(x)=0 has at most one real solution for f(x)=x33x2+8x4f(x)=x^{3}-3 x^{2}+8 x-4 using Rolle's Theorem.
2. Show f(x)f(x) is always increasing by analyzing f(x)f^{\prime}(x).

See Solution

Problem 21259

Find the intervals where the function a(x)=x2+16x+3a(x)=\frac{x^{2}+16}{x+3} is increasing or decreasing. Show your work.

See Solution

Problem 21260

Show that x=1x=-1 is a critical point of the function f(x)=2x+ln(x2)f(x)=2x+\ln\left(x^{2}\right).

See Solution

Problem 21261

Find the area between y=4x+5y=\sqrt{4x+5} and y=7+3xy=7+3x from x=2x=2 to x=8x=8.

See Solution

Problem 21262

Find the derivative of the function: 32x4x23 \cdot 2^{x-4} \cdot x^{-2}.

See Solution

Problem 21263

Find the tangent line equation for R(z)=log5(2z2+7)R(z)=\log _{5}(2 z^{2}+7) at z=3z=3.

See Solution

Problem 21264

Find the derivative of the function f(x)=32x4x2f(x) = 3 \cdot 2^{x-4} \cdot x^{-2}.

See Solution

Problem 21265

Consider the function f(x)=x3x2f(x)=x^{3}-x^{2}.
1. Verify Mean Value Theorem on [1,1][-1,1] and find cc such that f(c)=f(1)f(1)2f^{\prime}(c)=\frac{f(1)-f(-1)}{2}.
2. Identify critical points, intervals of increase/decrease, concavity, and classify points. Sketch the graph.
3. Find absolute max and min of f(x)f(x) on [1,1][-1,1].

See Solution

Problem 21266

As x±x \rightarrow \pm \infty, find the behavior of f(x)f(x), g(x)g(x), and h(x)h(x) for the given functions.

See Solution

Problem 21267

Calculate the consumers' surplus for D(x)=600x+3D(x)=\frac{600}{x+3} at xE=7x_{E}=7. Round to the nearest cent.

See Solution

Problem 21268

Solve the integral using substitution: 1x4dx\int \frac{1}{x-4} d x and include the constant CC.

See Solution

Problem 21269

Find the population increase over the first 5 years given the rate P(t)=646t13P^{\prime}(t)=64-6 t^{\frac{1}{3}}. Round to the nearest whole animal.

See Solution

Problem 21270

Calculate the area between the xx-axis and the curve y=f(x)y=f(x) for f(x)=x2x6f(x)=x^{2}-x-6 over the interval [3,0][-3,0].

See Solution

Problem 21271

Calculate the indefinite integral: (6x3+5x)dx\int(6 \sqrt[3]{x}+5 \sqrt{x}) \, dx

See Solution

Problem 21272

Evaluate the integral: 7072500(x)(x9x2)dx\int_{-\frac{707}{250}}^{0}(x)-\left(x \sqrt{9-x^{2}}\right) d x

See Solution

Problem 21273

Find the total profit P(x)P(x) from the marginal profit function P(x)=3608xP'(x) = 360 - 8x and calculate P(44)P(44).

See Solution

Problem 21274

Calculate the indefinite integral of the function: (5x47x+8x10)dx\int\left(5 x^{4}-\frac{7}{x}+\frac{8}{x^{10}}\right) d x

See Solution

Problem 21275

Find the derivatives of these functions: (i) f(x)=tan1(e3x+2x)+ln(csch(5x))f(x)=\tan^{-1}(e^{3x}+2x)+\ln(\operatorname{csch}(5x)), (ii) f(x)=(cos)sin(8x3)f(x)=(\cos)^{\sin(8x-3)}, (iii) f(x)=sin1(coshx)f(x)=\sin^{-1}(\cosh x).

See Solution

Problem 21276

Graph f(x)=exf(x)=e^{x} on [5,5][-5,5] by [10,30][-10,30]. Find f(1)f(1), f(3)f(-3), f(4)f(4), horizontal asymptote, and y-intercept.

See Solution

Problem 21277

Evaluate the integral from 5 to 18 of 3x\frac{3}{x} dx. Provide the answer exactly or rounded to two decimal places.

See Solution

Problem 21278

Find ff if f(t)=48+cos(t)f^{\prime \prime \prime}(t)=48+\cos(t), using constants CC, DD, and GG for antiderivatives.

See Solution

Problem 21279

Find the derivatives of: (i) f(x)=tan1(e3x+2x)+ln(csch(5x))f(x)=\tan^{-1}(e^{3x}+2x)+\ln(\operatorname{csch}(5x)), (ii) f(x)=(cos)sin(8x3)f(x)=(\cos)^{\sin(8x-3)}, (iii) f(x)=sin1(coshx)f(x)=\sin^{-1}(\cosh x).

See Solution

Problem 21280

Solve the integral using substitution: e3x3+824x7dx\int e^{3 x^{3}+8} \cdot 24 x^{7} \, dx and include the constant CC.

See Solution

Problem 21281

Calculate the indefinite integral: (5x5x168ex)dx\int\left(\frac{5}{x}-5 x^{-\frac{1}{6}}-8 e^{x}\right) d x

See Solution

Problem 21282

Solve the integral using substitution: 27y+64dy\int \frac{2}{\sqrt[4]{7 y+6}} d y, and include the constant CC.

See Solution

Problem 21283

Calcula la constante de integración de la integral (5x4+3x2)dx\int(5 x^{4}+3 x^{2}) d x sabiendo que g(2)=48\mathrm{g}_{(2)}=48.

See Solution

Problem 21284

Meena wants to know how much to invest at a 3%3\% continuous interest rate to have $470\$470 in 13 years.

See Solution

Problem 21285

Evaluate the integral from 2 to 5 of (2+6e1.7x)dx(2 + 6 e^{1.7 x}) \, dx. Provide the answer exactly or rounded to two decimal places.

See Solution

Problem 21286

Find the profit for the first 74 motorcycle helmets given P(x)=370.19xP^{\prime}(x)=37-0.19 x. Round to the nearest cent.

See Solution

Problem 21287

Bestimmen Sie die Werte der folgenden Reihen:
1. k=08k!=\sum_{k=0}^{\infty} \frac{8}{k !}=\square
2. m=26n2=\sum_{m=2}^{\infty} \frac{6}{n^{2}}=\square
3. k=1k2k!=\sum_{k=1}^{\infty} \frac{k-2}{k !}=\square
4. k=12(k+2)k=\sum_{k=1}^{\infty} \frac{2}{(k+2) k}=
5. k=0k1k!=\sum_{k=0}^{\infty} \frac{k-1}{k !}=\square
6. k=2k1k!=\sum_{k=2}^{\infty} \frac{k-1}{k !}=

See Solution

Problem 21288

Bestimme das Extremum der Funktion fa(x)=13ax3x2f_{a}(x)=\frac{1}{3 a} x^{3}-x^{2} in Abhängigkeit vom Parameter a.

See Solution

Problem 21289

Solve the integral using substitution: (x7)4dx\int(x-7)^{-4} dx and include the constant CC.

See Solution

Problem 21290

Evaluate the integral: (4x2+8x315x43)dx\int(4 x^{2}+8 x^{3}-15 x^{4}-3) \, dx

See Solution

Problem 21291

Bestimme das Extremum der Funktion fa(x)=13ax3x2f_{a}(x)=\frac{1}{3 a} x^{3}-x^{2} in Abhängigkeit vom Parameter a.

See Solution

Problem 21292

Evaluate the integral: y2sin(xy2)dy\int y^{2} \sin \left(x y^{2}\right) d y

See Solution

Problem 21293

Berechne die Integrale: a) 02(3x2ex)dx\int_{0}^{2}(3 x^{2}-e^{x}) d x b) 14(x1)dx\int_{1}^{4}(\sqrt{x}-1) d x

See Solution

Problem 21294

Bestimme das Extremum der Funktion fa(x)=13ax3x2f_{a}(x)=\frac{1}{3 a} x^{3}-x^{2} in Abhängigkeit vom Parameter a.

See Solution

Problem 21295

Evaluate the integral from 2 to 7 of 14x+2dx\frac{1}{4x+2} \, dx. Provide the exact answer or round to two decimal places.

See Solution

Problem 21296

Calculate the integral: (10x412x5+9x220x3+4x+3)dx\int(10 x^{4}-12 x^{5}+9 x^{2}-20 x^{3}+4 x+3) \, dx

See Solution

Problem 21297

A particle moves on the parabola 4y=(x+3)24y = (x+3)^2 with xx increasing at 2 units/sec. Find the distance change rate to (3,0)(-3,0) at (1,4)(1,4).

See Solution

Problem 21298

Evaluate the integral: (x35+6x4+3x)dx\int\left(\sqrt[5]{x^{3}}+\frac{6}{x^{4}}+\frac{3}{x}\right) d x

See Solution

Problem 21299

A 12-foot ladder leans against a wall. Find the equation x2+y2=122x^2 + y^2 = 12^2 and the rate dydt\frac{dy}{dt} when x=9x=9 and dxdt=4\frac{dx}{dt}=4.

See Solution

Problem 21300

c) Bestimmen Sie limx+(1x3)\lim _{x \rightarrow+\infty}\left(\frac{1}{x-3}\right) und erklären Sie. d) Bestimmen Sie limx+(axb+c)\lim _{x \rightarrow+\infty}\left(\frac{a}{x-b}+c\right) für a0a \neq 0 und erklären Sie. 2) Finden Sie den Grenzwert von ff für x+x \rightarrow+\infty und xx \rightarrow-\infty: a) f(x)=4x+2f(x)=\frac{4}{x}+2 b) f(x)=34x+1f(x)=3-\frac{4}{x+1} c) f(x)=1x2+2,5f(x)=\frac{1}{x-2}+2,5

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord