Calculus

Problem 16201

Given the function g(t)=t7tg(t)=t \sqrt{7-t} for t<6t<6, find g(t)g^{\prime}(t), then determine where g(c)=0g^{\prime}(c)=0 or is undefined. List critical numbers.

See Solution

Problem 16202

Given the function h(x)=sin2(x)+cos(x)h(x)=\sin ^{2}(x)+\cos (x) for 0<x<2π0<x<2 \pi, find h(x)h^{\prime}(x) and the critical numbers where h(c)=0h^{\prime}(c)=0.

See Solution

Problem 16203

Find xx values for local minima of f(x)f(x) given its derivative f(x)f^{\prime}(x) with points (0,4)(0,4), (0,3.2)(0,3.2), and zeros at x=2x=-2, x=4x=4.

See Solution

Problem 16204

Find the area under the normal curve between z1=1.56z_{1}=-1.56 and z2=1.56z_{2}=1.56. Round to four decimal places.

See Solution

Problem 16205

Find critical numbers of the function g(x)=x77x5g(x)=x^{7}-7 x^{5}. Enter answers as a comma-separated list.

See Solution

Problem 16206

Find the absolute extrema of f(x)=x332x2f(x)=x^{3}-\frac{3}{2} x^{2} on [5,4][-5,4]. Minimum (x,y)=()(x, y)=(\square), Maximum (x,y)=()(x, y)=(\square).

See Solution

Problem 16207

Find the derivative f(3)f \prime(3) for the function f(x)=3x3+3f(x)=3 \sqrt[3]{x}+3.

See Solution

Problem 16208

Find the derivative f(2)f^{\prime}(2) for the function f(x)=(ax+b)3f(x)=(a x+b)^{3}.

See Solution

Problem 16209

Find the derivative f(1)f \prime(-1) for the function f(x)=(x2x+1)(x3+1)f(x)=(x^{2}-x+1)(x^{3}+1).

See Solution

Problem 16210

Find the derivative f(1)f^{\prime}(-1) for the function f(x)=(3x+1)3f(x)=(3x+1)^{3}.

See Solution

Problem 16211

Evaluate the integral 03a(x39ax2+18a2x)dx\int_{0}^{3 a} (x^{3}-9 a x^{2}+18 a^{2} x) d x and 3a6a(x39ax2+18a2x)dx\int_{3 a}^{6 a} (x^{3}-9 a x^{2}+18 a^{2} x) d x.

See Solution

Problem 16212

Find the derivative f(a)f'(a) for the function f(x)=xa+1nf(x)=\sqrt[n]{x-a+1}.

See Solution

Problem 16213

Calculate the area under the standard normal curve from z1=1.645z_{1}=-1.645 to z2=1.645z_{2}=1.645. Round to four decimal places.

See Solution

Problem 16214

Given the function y=x28ln(x)y=x^{2}-8 \ln (x) on [1,6][1,6], find the critical number and evaluate yy at endpoints.

See Solution

Problem 16215

Find the second-order partial derivatives of f(x,y)=ln(5+x2y2)f(x, y)=\ln(5+x^{2}y^{2}) and show fxy=fyxf_{xy} = f_{yx}.

See Solution

Problem 16216

Find the derivative f(2)f \prime(2) for the function f(x)=2(1x)4f(x)=2(1-x)^{4}.

See Solution

Problem 16217

Find the derivative f(2)f^{\prime}(2) for the function f(x)=(x2+x)(x2)f(x)=(x^{2}+x)(x-2).

See Solution

Problem 16218

Dada la función de demanda p=0.05x+600p=-0.05 x+600, ¿cuál es el ingreso marginal para 5000 dispositivos vendidos?

See Solution

Problem 16219

Find the critical numbers of the function h(x)=sin2(x)+cos(x)h(x)=\sin ^{2}(x)+\cos (x) for 0<x<2π0<x<2\pi where h(c)=0h^{\prime}(c)=0.

See Solution

Problem 16220

Find the derivative f(3)f \prime(3) for the function f(x)=(x3)(x32)f(x)=(x-3)(x^{3}-2).

See Solution

Problem 16221

Find the derivative f(1)f^{\prime}(1) for the function f(x)=2x1f(x)=\sqrt{2x-1}.

See Solution

Problem 16222

Find the second partial derivatives of the function f(x,y)=5xy+5yxf(x, y) = 5x\sqrt{y} + 5y\sqrt{x}.

See Solution

Problem 16223

Find the derivative f(1)f'(1) for the function f(x)=2(3x2+x3)2f(x)=2(3x^{2}+x-3)^{2}.

See Solution

Problem 16224

Find the derivative g(0)g'(0) for the function g(x)=(x2+7x1)4g(x)=(x^{2}+7x-1)^{4}.

See Solution

Problem 16225

Find the second-order partial derivatives of f(x,y)=5xy+5yxf(x, y)=5 x \sqrt{y}+5 y \sqrt{x} and show fxy=fyxf_{xy}=f_{yx}.

See Solution

Problem 16226

Find the derivative of f(x)=1x+x3f(x)=\frac{1}{x}+\sqrt{x^{3}} using the correct derivative rules.

See Solution

Problem 16227

Find the derivative of f(x)=1x+x3f(x)=\frac{1}{x}+\sqrt{x^{3}} using the correct derivative rules.

See Solution

Problem 16228

Find the tangent line equation to y=5x4y=\sqrt{5x-4} at x=4x=4.

See Solution

Problem 16229

Find the derivative of f(x)=2x2x3f(x)=2 x^{2}-x^{3} using first principles, then verify with the power rule.

See Solution

Problem 16230

Find the second derivative of the following functions: a) y=x5(23x2)y=x^{5}\left(2-\frac{3}{x^{2}}\right) b) y=e23x3y=\sqrt{e^{2-3 x^{3}}} c) y=(x+x3ln(6x))2y=\left(x+x^{3} \ln (6 x)\right)^{2} d) y=xe4xy=x e^{4 x}

See Solution

Problem 16231

Find the derivative of g(x)=(3x25x)(1x2x)g(x)=(3 x^{2}-5 x)(\frac{1}{x^{2}}-\sqrt{x}) without simplifying.

See Solution

Problem 16232

Find a function f(x)f(x) such that f(x)=x3+x23f \prime(x)=x^{3}+x^{2}-3. Explain why there are multiple solutions.

See Solution

Problem 16233

Find the area under the curve g(x)=2x2x1g(x)=2x^{2}-x-1 on the interval [3,5][3,5] using 4 rectangles.

See Solution

Problem 16234

Find the second derivative of these functions:
f) y=x1(x+1)2y=\frac{x-1}{(x+1)^{2}}
g) y=e(2x+7)2y=e^{(2 x+7)^{2}}

See Solution

Problem 16235

Bestimmen Sie die Ableitung von f(x)f(x) an den gegebenen Stellen: a) x0=2x_{0}=2, b) x0=3x_{0}=-3, c) x0=4x_{0}=4, d) x0=2x_{0}=-2, e) x0=1x_{0}=-1, f) x0=9x_{0}=9.

See Solution

Problem 16236

Find when the acceleration of the particle given by s(t)=t312t2+45t+3s(t)=t^{3}-12 t^{2}+45 t+3 is zero.

See Solution

Problem 16237

An object at 180F180^{\circ} \mathrm{F} cools in water at 50F50^{\circ} \mathrm{F}. Find F(t)F(t) with cooling constant k=0.4k=-0.4.

See Solution

Problem 16238

Find points on the curve y=(x1)(x24)y=(x-1)(x^{2}-4) where the tangent is parallel to y=4xy=-4x.

See Solution

Problem 16239

Find the population change rate at x=15x=15 months for p(x)=3x2+5xe2x+5000p(x)=3x^2+5xe^{2x}+5000 and the change during the 6th month.

See Solution

Problem 16240

Find the derivative of h(x)=(2x+3x2)34x+1h(x)=\frac{\left(-2 x+3 x^{2}\right)^{3}}{\sqrt{4 x+1}} using the chain and product rules.

See Solution

Problem 16241

Find the derivative F(x)F^{\prime}(x) where F(x)=2x21t4dtF(x)=\int_{2}^{x^{2}} \frac{1}{t^{4}} dt.

See Solution

Problem 16242

Find the time for 61%61 \% of a nucleus with a half-life of 32 min32 \mathrm{~min} to decompose. Options: a) 23 min23 \mathrm{~min} b) 21 min21 \mathrm{~min} c) 58 min58 \mathrm{~min} d) 51 min51 \mathrm{~min} e) 43 min43 \mathrm{~min}.

See Solution

Problem 16243

Find the second derivative for the following functions: a) y=x5(23x2)y=x^{5}\left(2-\frac{3}{x^{2}}\right) b) y=e23x3y=\sqrt{e^{2-3 x^{3}}} c) y=(x+x3ln(6x))2y=\left(x+x^{3} \ln (6 x)\right)^{2} d) y=xe4xy=x e^{4 x} e) y=4x33xy=4 x^{3}-3 x f) y=x1(x+1)2y=\frac{x-1}{(x+1)^{2}} g) y=e(2x+7)2y=e^{(2 x+7)^{2}}

See Solution

Problem 16244

Find the derivative F(x)F^{\prime}(x) where F(x)=2x21t4dtF(x)=\int_{2}^{x^{2}} \frac{1}{t^{4}} dt.

See Solution

Problem 16245

Evaluate the integral 273dx\int_{2}^{7} 3 \, dx using the limit definition. Find width Δx=5n\Delta x = \frac{5}{n}.

See Solution

Problem 16246

Find the function ff such that f(x)=x2f^{\prime \prime}(x)=x^{-2} for x>0x>0, with conditions f(1)=0f(1)=0 and f(6)=0f(6)=0.

See Solution

Problem 16247

Solve dydx=2x1\frac{d y}{d x}=2 x-1 given y(1)=1y(1) = 1.

See Solution

Problem 16248

Solve the differential equation f(x)=4xf'(x)=4x with the initial condition f(0)=5f(0)=5. Find f(x)f(x).

See Solution

Problem 16249

Find the function yy such that dydx=2(x1)\frac{d y}{d x}=2(x-1) and y(1)=2y(1)=-2.

See Solution

Problem 16250

Solve the differential equation f(s)=14s12s3f'(s) = 14s - 12s^3 with initial condition f(3)=5f(3) = 5. Find f(s)=f(s) = \square.

See Solution

Problem 16251

Find the function ff given that f(x)=10+6x+24x2f''(x)=10+6x+24x^2, with conditions f(0)=2f(0)=2 and f(1)=12f(1)=12.

See Solution

Problem 16252

Find the second derivative of these functions:
b) $y=\sqrt{e^{2-3 x^{3}}$ c) $y=\left(x+x^{3} \ln (6 x)\right)^{2}$ d) $y=x e^{4 x}$

See Solution

Problem 16253

Find the particle's position s(t)s(t) given a(t)=t27t+4a(t)=t^{2}-7t+4, s(0)=0s(0)=0, and s(1)=20s(1)=20.

See Solution

Problem 16254

Find the general antiderivative of g(t)=6+t+t2tg(t)=\frac{6+t+t^{2}}{\sqrt{t}} and verify by differentiation: G(t)=G(t)=\square.

See Solution

Problem 16255

Bestimmen Sie den Gesamtinhalt A zwischen dem Graphen von f(x)=x45x2+4f(x)=x^{4}-5 x^{2}+4 und der xx-Achse im Intervall I=[2;1]I=[-2 ; 1].

See Solution

Problem 16256

Find the elasticity E(70)E(70) for the demand equation 1p+3x2150=01 p + 3 x^{2} - 150 = 0.

See Solution

Problem 16257

Find the function ff such that f(θ)=sin(θ)+cos(θ)f''(\theta)=\sin(\theta)+\cos(\theta) with f(0)=5f(0)=5 and f(0)=4f'(0)=4.

See Solution

Problem 16258

Evaluate the integral 48(12x32x+9)dx\int_{4}^{8}\left(\frac{1}{2} x^{3}-2 x+9\right) d x using given values.

See Solution

Problem 16259

Find lower and upper estimates of 010f(x)dx\int_{0}^{10} f(x) dx for a decreasing function ff using given values.

See Solution

Problem 16260

Find the area under f(x)=x2+1+2xf(x)=x^{2}+\sqrt{1+2 x} from x=4x=4 to x=6x=6 using right endpoints as a limit: limni=1n()\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\square).

See Solution

Problem 16261

Calculate the left Riemann sum for f(x)=10x2f(x)=10-x^{2} on [0,1][0,1] with n=4n=4. Sketch the curve and rectangles. Is it an underestimate or overestimate?

See Solution

Problem 16262

Find the population change rate at x=15x=15 for p(x)=3x2+5xe2x+5000p(x)=3x^2+5xe^{2x}+5000 and the change during the 16th month.

See Solution

Problem 16263

Set up the integral for the area under f(x)=42xf(x) = 4 - 2x from x=0x = 0 to its x-intercept. Do not evaluate.

See Solution

Problem 16264

Bestimme die ersten und zweiten Ableitungen der Funktionen f(x)=(x+3)x2f(x)=(x+3) \cdot x^{2}, f(x)=(23x)4f(x)=(2-3 x)^{4} und f(x)=xsin(x)f(x)=x \cdot \sin (x).

See Solution

Problem 16265

Find the initial mass of a radioactive substance that is 3 kg3 \mathrm{~kg} today, decaying at 1%1 \% per day for 6 days.

See Solution

Problem 16266

Express the area under y=x3y=x^{3} from 0 to 1 as a limit using right endpoints: A=limni=1nf(xi)ΔxA=\lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x. Evaluate using the sum of cubes: 13+23++n3=[n(n+1)2]21^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}.

See Solution

Problem 16267

Evaluate the integral 67(2x21)dx\int_{6}^{7}\left(\frac{2}{x^{2}}-1\right) d x and verify using a graphing utility.

See Solution

Problem 16268

Estimate the area under f(x)=1xf(x)=\frac{1}{x} from x=3x=3 to x=6x=6 using 3 rectangles and the midpoint rule. Show your work.

See Solution

Problem 16269

Find the mass after 3 days of a 15g sample growing at 9%9\% per day. Round to the nearest tenth.

See Solution

Problem 16270

Find the limit using L'Hôpital's Rule: limxln(2x)x1/2=\lim _{x \rightarrow \infty} \frac{\ln (2 x)}{x^{1 / 2}} =

See Solution

Problem 16271

Find the limit as xx approaches infinity: limxtan1(xx22x2+3)\lim _{x \rightarrow \infty} \tan ^{-1}\left(\frac{x-x^{2}-2}{x^{2}+3}\right). Answer with a number, -\infty, ++\infty, or DNE.

See Solution

Problem 16272

Evaluate the limit using L'Hôpital's Rule: limx05x6xx=\lim _{x \rightarrow 0} \frac{5^{x}-6^{x}}{x}=

See Solution

Problem 16273

Find the general antiderivative of f(x)=41+x2x45f(x)=\frac{4}{1+x^{2}}-\sqrt[5]{x^{4}}.

See Solution

Problem 16274

Approximate the root of f(x)=x38f(x)=x^{3}-8 using 5 iterations of Newton's Method, starting with x0=2.0x_{0}=2.0, to 5 decimal places.

See Solution

Problem 16275

Find the function ff where f(x)=x3cosxf''(x)=\sqrt[3]{x}-\cos x, with conditions f(0)=2f(0)=2 and f(1)=2f(1)=2.

See Solution

Problem 16276

Calculate the left Riemann sum for f(x)=10x2f(x)=10-x^{2} on [0,1][0,1] with n=4n=4. Sketch the curve and rectangles. Is it an underestimate or overestimate?

See Solution

Problem 16277

Find the long-term number of people who will hear the rumor modeled by N(t)=3601+39e0.5tN(t)=\frac{360}{1+39 e^{-0.5 t}}.

See Solution

Problem 16278

Find the derivative of the function r(t)=32tr(t)=3^{2 \sqrt{t}}.

See Solution

Problem 16279

Find the derivative of the function using logarithmic differentiation: y=x2sin(x)y=x^{2 \sin (x)}.

See Solution

Problem 16280

Find the area under f(x)=x+lnxf(x)=x+\ln x from x=3x=3 to x=8x=8 as a limit without evaluating it. Area = 38f(x)dx\int_{3}^{8} f(x) dx.

See Solution

Problem 16281

Find the half-life of a radioactive material decaying at 26%26\% per minute using the formula A(t)=A0ertA(t)=A_{0} e^{r t}.

See Solution

Problem 16282

Find the limit expression for the area under f(x)=x+lnxf(x)=x+\ln x from x=3x=3 to x=8x=8. Do not evaluate.

See Solution

Problem 16283

Find a region with area equal to limni=1n5n1+5in\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{5}{n} \sqrt{1+\frac{5 i}{n}}.

See Solution

Problem 16284

Montrez que la fonction ff avec f(x)=x+11tanxf(x)=\frac{\sqrt{x+1}-1}{\tan x} et f(0)=12f(0)=\frac{1}{2} est continue en 0.

See Solution

Problem 16285

Wyznacz pochodną funkcji f(x)=3lnx2cosx+x3+4x57f(x)=3 \ln x-2 \cos x+x^{3}+4 \sqrt[7]{x^{5}}.

See Solution

Problem 16286

How long does it take for a bacteria population to double with a growth rate of 8%8\% per hour? Round to the nearest hundredth.

See Solution

Problem 16287

Calculate the area under the standard normal curve for z1=1.55z_{1}=-1.55 and z2=1.55z_{2}=1.55, rounding to four decimal places.

See Solution

Problem 16288

Find the hourly growth rate of a bacteria population that grows from 2500 to 3305 in 6 hours using exponential growth.

See Solution

Problem 16289

Find the half-life of a substance with a decay rate of 4.4%4.4\% per day using the continuous exponential decay model.

See Solution

Problem 16290

How long does it take for a bacteria population to double with a growth rate of 2.1%2.1\% per hour? Round to the nearest hundredth.

See Solution

Problem 16291

Calculate the integral: tan1(9x)1+81x2dx\int \frac{\tan^{-1}(9x)}{1+81x^{2}} \, dx.

See Solution

Problem 16292

Find where the function f(x)=x2+4x3f(x)=\sqrt[3]{x^{2}+4 x} is increasing or decreasing. Use the second derivative test for local extrema.

See Solution

Problem 16293

Find the minimum sunlight hours from the function D(t)=12+5.2cos(2π365t)D(t)=12+5.2 \cos \left(\frac{2 \pi}{365} t\right).

See Solution

Problem 16294

Find the derivative f(3)f^{\prime}(3) for the function f(x)=2x3+xf(x)=2x^{3}+x.

See Solution

Problem 16295

Find the derivative of f(x)=2x2+x+5+3x1+x2f(x)=2x^2+x+5+3x^{-1}+x^{-2}.

See Solution

Problem 16296

Evaluate the integral: 01xdx(x2+1)3\int_{0}^{1} \frac{x \, dx}{(x^{2}+1)^{3}}

See Solution

Problem 16297

Calculate the integral 03dx9x2\int_{0}^{3} \frac{d x}{\sqrt{9-x^{2}}}.

See Solution

Problem 16298

Evaluate the integral 0πsin6x2dx\int_{0}^{\pi} \sin ^{6} \frac{x}{2} d x.

See Solution

Problem 16299

Find the derivative of f(x)=(x43)(2x2+x5)f(x)=(x^{4}-3)(2 x^{2}+x-5).

See Solution

Problem 16300

Evaluate the integral: π4π2cosxsin2xdx\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\sin ^{2} x} d x

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord