Solved on Feb 10, 2024
Find the volume of the solid generated by revolving the region bounded by , , and about the -axis.
STEP 1
الافتراضات
1. المنطقة المحددة بواسطة المنحنى .
2. المنطقة المحددة بواسطة خط (محور السينات).
3. المنطقة المحددة بواسطة الخط العمودي .
4. دوران المنطقة حول محور الصادات (-axis) لتكوين الجسم الصلب.
5. نحتاج إلى حساب حجم الجسم الصلب الناتج عن الدوران.
STEP 2
لحساب الحجم، سنستخدم طريقة الأقراص (Disc Method) حيث يُعطى الحجم بالعلاقة:
حيث هي الدالة التي تُعرف الحد العلوي للمنطقة المدورة، و و هما حدود التكامل.
STEP 3
نحدد الدالة وحدود التكامل و:
STEP 4
نكتب تعبير الحجم باستخدام الدالة وحدود التكامل المحددة:
STEP 5
نبدأ عملية التكامل بالتعويض عن الدالة وحدود التكامل في التعبير:
STEP 6
لحل التكامل، نحتاج إلى استخدام تقنيات التكامل المناسبة. هذا التكامل ليس من النوع الأساسي وقد يتطلب تكامل بالتجزئة أو استخدام تحويلات معينة.
STEP 7
نستخدم تكامل بالتجزئة حيث يُعطى بالعلاقة:
لكن قبل ذلك، نحتاج إلى تحديد و.
STEP 8
نختار و بحيث يسهل تكامل أو تفاضل أحدهما:
STEP 9
نحسب و:
STEP 10
نطبق تكامل بالتجزئة باستخدام , , و:
STEP 11
نحسب القيمة الأولى في التعبير:
STEP 12
نكتب التعبير الجديد للحجم بعد حساب القيمة الأولى:
STEP 13
لحساب التكامل الثاني، قد نحتاج إلى استخدام تقنيات أخرى مثل التكامل بالتعويض أو تبسيط التعبير أكثر.
STEP 14
نلاحظ أن التكامل الثاني يمكن أن يُحل باستخدام التكامل بالتعويض. نضع وبالتالي .
STEP 15
نعوض في التكامل:
STEP 16
الآن نحتاج إلى حل التكامل:
هذا التكامل معقد وقد يتطلب استخدام برمجيات الرياضيات أو جداول التكامل لإيجاد حل تحليلي له.
STEP 17
بافتراض أننا حصلنا على الحل التحليلي للتكامل أو قيمته العددية، دعونا نرمز لهذه القيمة بـ.
STEP 18
نعوض قيمة في تعبير الحجم:
STEP 19
نحسب الحجم النهائي للجسم الصلب بعد إدخال قيمة .
STEP 20
بافتراض أننا حصلنا على القيمة النهائية للحجم، نقدم الجواب النهائي.
الحجم النهائي للجسم الصلب الناتج عن دوران المنطقة المحددة حول محور الصادات هو:
Was this helpful?